2,432 research outputs found

    Enhanced skin carcinogenesis and lack of thymus hyperplasia in transgenic mice expressing human cyclin D1b (CCND1b)

    Get PDF
    Cyclin D1b is an alternative transcript of the cyclin D1 gene (CCND1) expressed in human tumors. Its abundance is regulated by a single base pair polymorphism at the exon 4/intron 4 boundary (nucleotide 870). Epidemiological studies have shown a correlation between the presence of the G870A allele (that favors the splicing for cyclin D1b) with increased risk and less favorable outcome in several forms of cancer. More recently, it has been shown that, unlike cyclin D1a, the alternative transcript D1b by itself has the capacity to transform fibroblasts in vitro. In order to study the oncogenic potential of cyclin D1b, we developed transgenic mice expressing human cyclin D1b under the control of the bovine K5 promoter (K5D1b mice). Seven founders were obtained and none of them presented any significant phenotype or developed spontaneous tumors. Interestingly, K5D1b mice do not develop the fatal thymic hyperplasia, which is characteristic of the cyclin D1a transgenic mice (K5D1a). Susceptibility to skin carcinogenesis was tested in K5D1b mice using two-stage carcinogenesis protocols. In two independent experiments, K5D1b mice developed higher papilloma multiplicity as compared with wild-type littermates. However, when K5D1b mice were crossed with cyclin D1KO mice, the expression of cyclin D1b was unable to rescue the carcinogenesis-resistant phenotype of the cyclin D1 KO mice. To further explore the role of cyclin D1b in mouse models of carcinogenesis we carried out in silico analysis and in vitro experiments to evaluate the existence of a mouse homologous of the human cyclin D1b transcript. We were unable to find any evidence of an alternatively spliced transcript in mouse Ccnd1. These results show that human cyclin D1b has different biological functions than cyclin D1a and confirm its oncogenic properties.Fil: Rojas, Paola Andrea. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; Argentina. University of Texas; Estados UnidosFil: Benavides, Fernando. University of Texas; Estados UnidosFil: Blando, Jorge. University of Texas; Estados UnidosFil: PĂ©rez, Carlos. University of Texas; Estados UnidosFil: Cardenas, Kim. University of Texas; Estados UnidosFil: Richie, Ellen. University of Texas; Estados UnidosFil: Knudsen, Erik S.. Thomas Jefferson University; Estados UnidosFil: Johnson, David G.. University of Texas; Estados UnidosFil: Senderowicz, Adrian M.. Department of Health and Human Services. Food and Drug Administration. Center for Drug Evaluation and Research; Estados UnidosFil: Rodriguez Puebla, Marcelo L.. University of North Carolina; Estados UnidosFil: Conti, Claudio. University of Texas; Estados Unido

    Engineering Hybrid Epitaxial InAsSb/Al Nanowire Materials for Stronger Topological Protection

    Get PDF
    The combination of strong spin-orbit coupling, large gg-factors, and the coupling to a superconductor can be used to create a topologically protected state in a semiconductor nanowire. Here we report on growth and characterization of hybrid epitaxial InAsSb/Al nanowires, with varying composition and crystal structure. We find the strongest spin-orbit interaction at intermediate compositions in zincblende InAs1−x_{1-x}Sbx_{x} nanowires, exceeding that of both InAs and InSb materials, confirming recent theoretical studies \cite{winkler2016topological}. We show that the epitaxial InAsSb/Al interfaces allows for a hard induced superconducting gap and 2ee transport in Coulomb charging experiments, similar to experiments on InAs/Al and InSb/Al materials, and find measurements consistent with topological phase transitions at low magnetic fields due to large effective gg-factors. Finally we present a method to grow pure wurtzite InAsSb nanowires which are predicted to exhibit even stronger spin-orbit coupling than the zincblende structure.Comment: 10 pages and 5 figure

    An optical surface resonance may render photonic crystals ineffective

    Full text link
    In this work we identify and study the presence of extremely intense surface resonances that frustrate the coupling of photons into a photonic crystal over crucial energy ranges. The practical utility of photonic crystals demands the capability to exchange photons with the external medium, therefore, it is essential to understand the cause of these surface resonances and a route to their elimination. We demonstrate that by modifying the surface geometry it is possible to tune the optical response or eliminate the resonances to enable full exploitation of the photonic crystal.Comment: 6 pages, 8 figures, submitted to PR

    Simultaneous real-time measurement of EEG/EMG and L-glutamate in mice: A biosensor study of neuronal activity during sleep

    Get PDF
    We report on electroencephalograph (EEG) and electromyograph (EMG) measurements concurrently with real-time changes in L-glutamate concentration. These data reveal a link between sleep state and extracellular neurotransmitter changes in a freely-moving (tethered) mouse. This study reveals, for the first time in mice, that the extracellular L-glutamate concentration in the pre-frontal cortex (PFC) increases during periods of extended wakefulness, decreases during extended sleep episodes and spikes during periods of REM sleep. Individual sleep epochs (10 s in duration) were scored as wake, slow-wave (SW) sleep or rapid eye movement (REM) sleep, and then correlated as a function of time with measured changes in L-glutamate concentrations. The observed L-glutamate levels show a statistically significant increase of 0.86 ± 0.26 ΌM (p < 0.05) over 37 wake episodes recorded from all mice (n = 6). Over the course of 49 measured sleep periods longer than 15 min, L-glutamate concentrations decline by a similar amount (0.88 ± 0.37 ΌM, p < 0.08). The analysis of 163 individual REM sleep episodes greater than one min in length across all mice (n = 6) demonstrates a significant rise in L-glutamate levels as compared to the 1 min preceding REM sleep onset (RM-ANOVA, DF = 20, F = 6.458, p < 0.001). The observed rapid changes in L-glutamate concentration during REM sleep last only between 1 and 3 min. The approach described can also be extended to other regions of the brain which are hypothesized to play a role in sleep. This study highlights the importance of obtaining simultaneous measurements of neurotransmitter levels in conjunction with sleep markers to help elucidate the underlying physiological and ultimately the genetic components of sleep

    Fiber Metal Laminates Made by the VARTM Process

    Get PDF
    Fiber metal laminates (FMLs) are multi-component materials utilizing metals, fibers and matrix resins. Tailoring their properties is readily achievable by varying one or more of these components. Established FMLs like GLARE utilize aluminum foils, glass fibers and epoxy matrices and are manufactured using an autoclave. Two new processes for manufacturing FMLs using vacuum assisted resin transfer molding (VARTM) have been developed at the NASA Langley Research Center (LaRC). A description of these processes and the resulting FMLs are presented

    Discovery of a Gas-Rich Companion to the Extremely Metal-Poor Galaxy DDO 68

    Get PDF
    We present HI spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only 3% Z⊙_{\odot}, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during a gravitational interaction. Using archival HI spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (MHI_{\rm HI} == 2.8×\times107^{7} M⊙_{\odot}), recently star-forming (SFRFUV_{\rm FUV} == 1.4×\times10−3^{-3} M⊙_{\odot} yr−1^{-1}, SFRHα_{\rm H\alpha} << 7×\times10−5^{-5} M⊙_{\odot} yr−1^{-1}) companion has the same systemic velocity as DDO 68 (Vsys_{\rm sys} == 506 km s−1^{-1}; D == 12.74±\pm0.27 Mpc) and is located at a projected distance of 42 kpc. New HI maps obtained with the 100m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness HI gas forms a bridge between these objects.Comment: Accepted for publication in the Astrophysical Journal Letter

    Glycolytic Response to Inflammation Over Time: Role of Myeloid HIF-1alpha

    Get PDF
    The in vivo response to lipopolysaccharide (LPS) occurs rapidly and has profound physiological and metabolic effects. The hypoxia inducible (HIF) transcription factor is an intrinsic and essential part of inflammation, and is induced by LPS. To determine the importance of the HIF response in regulating metabolism following an LPS response, glucose uptake was quantified in a time dependent manner in mice lacking HIF-1α in myeloid cells. We found that deletion of HIF-1α has an acute protective effect on LPS-induced hypoglycemia. Furthermore, reduced glucose uptake was observed in the heart and brown fat, in a time dependent manner, following loss of HIF-1α. To determine the physiological significance of these findings, cardiovascular, body temperature, and blood pressure changes were subsequently quantified in real time using radiotelemetry measurements. These studies reveal the temporal aspects of HIF-1α as a regulator of the metabolic response to acute LPS-induced inflammation

    Resistance is futile: RNA-sequencing reveals differing responses to bat fungal pathogen in Nearctic Myotis lucifugus and Palearctic Myotis myotis

    Get PDF
    Resistance and tolerance allow organisms to cope with potentially life-threatening pathogens. Recently introduced pathogens initially induce resistance responses, but natural selection favors the development of tolerance, allowing for a commensal relationship to evolve. Mycosis by Pseudogymnoascus destructans, causing white-nose syndrome (WNS) in Nearctic hibernating bats, has resulted in population declines since 2006. The pathogen, which spread from Europe, has infected species of Palearctic Myotis for a longer period. We compared ecologically relevant responses to the fungal infection in the susceptible Nearctic M. lucifugus and less susceptible Palearctic M. myotis, to uncover factors contributing to survival differences in the two species. Samples were collected from euthermic bats during arousal from hibernation, a naturally occurring phenomenon, during which transcriptional responses are activated. We compared the whole-transcriptome responses in wild bats infected with P. destructans hibernating in their natural habitat. Our results show dramatically different local transcriptional responses to the pathogen between uninfected and infected samples from the two species. Whereas we found 1526 significantly upregulated or downregulated transcripts in infected M. lucifugus, only one transcript was downregulated in M. myotis. The upregulated response pathways in M. lucifugus include immune cell activation and migration, and inflammatory pathways, indicative of an unsuccessful attempt to resist the infection. In contrast, M. myotis appears to tolerate P. destructans infection by not activating a transcriptional response. These host-microbe interactions determine pathology, contributing to WNS susceptibility, or commensalism, promoting tolerance to fungal colonization during hibernation that favors survival.Peer reviewe
    • 

    corecore