977 research outputs found

    UV spectra of iron-doped carbon clusters FeC_n n = 3-6

    Full text link
    Electronic transitions of jet-cooled FeCn_n clusters (n=36n = 3 - 6) were measured between 230 and 300 nm by a mass-resolved 1+1 resonant two-photon ionization technique. Rotational profiles were simulated based on previous calculations of ground state geometries and compared to experimental observations. Reasonable agreement is found for the planar fan-like structure of FeC3_3. The FeC4_4 data indicate a shorter distance between the Fe atom and the bent C4_4 unit of the fan. The transitions are suggested to be 3^{3}A23_{2} \leftarrow ^{3}B1_{1} for FeC3_3 and 5^{5}A15_{1} \leftarrow ^{5}A1_{1} for FeC4_4. In contrast to the predicted Cv_{\infty \text{v}} geometry, non-linear FeC5_5 is apparently observed. Line width broadening prevents analysis of the FeC6_6 spectrum.Comment: 6 pages, 5 figure

    Frequency stabilisation and SI tracing of mid-infrared quantum-cascade lasers for precision molecular spectroscopy

    Get PDF
    The advancement of technologies for the precise interrogation of molecules offers exciting possibilities for new studies in the realms of precision spectroscopy and quantum technologies. Experiments in these domains often address molecular vibrations in the mid-infrared (MIR) spectral region, thus generating the need for spectrally pure and accurate MIR laser sources. Quantum-cascade lasers (QCLs) have emerged as flexible sources of coherent radiation available over a wide range of MIR frequencies. Here, we demonstrate a robust approach for the simultaneous linewidth narrowing, frequency stabilisation, and absolute frequency referencing of MIR QCLs all of which are prerequisites for precise spectroscopic experiments. Following upconversion of its radiation to the visible domain, we implement a phase lock of the QCL to a linewidth-narrowed optical frequency comb which is referenced to a remote SI-traceable primary frequency standard via a fibre link for absolute frequency calibration. To achieve a reliable frequency counting of the beat note between the QCL and the OFC, we employ redundant tracking oscillators and demonstrate a frequency instability of 5×10−13 at 1 s and 2×10−14 at 1000 s integration time, limited by the accuracy of our remote reference

    Local 2D Particle-in-cell simulations of the collisionless MRI

    Full text link
    The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical accretion disks. In systems accreting at well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the rate of Coulomb collisions between particles is very small, making the disk evolve essentially as a collisionless plasma. We present a nonlinear study of the collisionless MRI using first-principles particle-in-cell (PIC) plasma simulations. In this initial study we focus on local two-dimensional (axisymmetric) simulations, deferring more realistic three-dimensional simulations to future work. For simulations with net vertical magnetic flux, the MRI continuously amplifies the magnetic field until the Alfv\'en velocity, v_A, is comparable to the speed of light, c (independent of the initial value of v_A/c). This is consistent with the lack of saturation of MRI channel modes in analogous axisymmetric MHD simulations. The amplification of the magnetic field by the MRI generates a significant pressure anisotropy in the plasma (with the perpendicular pressure being larger than the parallel pressure). We find that this pressure anisotropy in turn excites mirror modes and that the volume averaged pressure anisotropy remains near the threshold for mirror mode excitation. Particle energization is due to both reconnection and viscous heating associated with the pressure anisotropy. Reconnection produces a distinctive power-law component in the energy distribution function of the particles, indicating the likelihood of non-thermal ion and electron acceleration in collisionless accretion disks. This has important implications for interpreting the observed emission -- from the radio to the gamma-rays -- of systems such as Sgr A*.Comment: 21 pages, 17 figure

    Extremal measures maximizing functionals based on simplicial volumes

    Get PDF
    We consider functionals measuring the dispersion of a d-dimensional distribution which are based on the volumes of simplices of dimension k ≤ d formed by k + 1 independent copies and raised to some power δ. We study properties of extremal measures that maximize these functionals. In particular, for positive δ we characterize their support and for negative δ we establish connection with potential theory and motivate the application to space-filling design for computer experiments. Several illustrative examples are presented

    Broadband velocity modulation spectroscopy of HfF^+: towards a measurement of the electron electric dipole moment

    Get PDF
    Precision spectroscopy of trapped HfF^+ will be used in a search for the permanent electric dipole moment of the electron (eEDM). While this dipole moment has yet to be observed, various extensions to the standard model of particle physics (such as supersymmetry) predict values that are close to the current limit. We present extensive survey spectroscopy of 19 bands covering nearly 5000 cm^(-1) using both frequency-comb and single-frequency laser velocity-modulation spectroscopy. We obtain high-precision rovibrational constants for eight electronic states including those that will be necessary for state preparation and readout in an actual eEDM experiment.Comment: 13 pages, 7 figures, 3 table

    Baryonic Condensates on the Conifold

    Get PDF
    We provide new evidence for the gauge/string duality between the baryonic branch of the cascading SU(k(M+1)) \times SU(kM) gauge theory and a family of type IIB flux backgrounds based on warped products of the deformed conifold and R^{3,1}. We show that a Euclidean D5-brane wrapping all six deformed conifold directions can be used to measure the baryon expectation values, and present arguments based on kappa-symmetry and the equations of motion that identify the gauge bundles required to ensure worldvolume supersymmetry of this object. Furthermore, we investigate its coupling to the pseudoscalar and scalar modes associated with the phase and magnitude, respectively, of the baryon expectation value. We find that these massless modes perturb the Dirac-Born-Infeld and Chern-Simons terms of the D5-brane action in a way consistent with our identification of the baryonic condensates. We match the scaling dimension of the baryon operators computed from the D5-brane action with that found in the cascading gauge theory. We also derive and numerically evaluate an expression that describes the variation of the baryon expectation values along the supergravity dual of the baryonic branch.Comment: 34 pages, 1 figure; v2 typos corrected, references added; v3 added comment on \kappa-symmetry of Euclidean D5-brane, published in JHE
    corecore