15,593 research outputs found

    A Consistent Model of the Accretion Shock Region in Classical T Tauri Stars

    Get PDF
    We develop a consistent model of the accretion shock region in Classical T Tauri Stars (CTTSs). The initial conditions of the post-shock flow are determined by the irradiated shock precursor and the ionization state is calculated without assuming ionization equilibrium. Comparison with observations of the C IV resonance lines (λλ 1550 Å) for CTTSs indicate that the post-shock emission predicted by the model is too large, for a reasonable range of parameters. If the model is to reproduce the observations, C IV emission from CTTSs has to be dominated by pre-shock emission, for stars with moderate to large accretion rates. For stars with low accretion rates, the observations suggest a comparable contribution between the pre- and post-shock regions. These conclusions are consistent with previous results indicating that the post-shock will be buried under the stellar photosphere for moderate to large accretion rates

    Interactive 3D visualisation of optimisation for water distribution systems

    Get PDF
    Session S6-03, Special Session: Evolutionary Computing in Water Resources Planning and Management IIIThis project investigates the use of modern 3D visualisation techniques to enable the interactive analysis of water distribution systems with the aim of providing the engineer with a clear picture of the problem and thus aid the overall design process. Water distribution systems are complex entities that are difficult to model and optimise as they consist of many interacting components each with a set of considerations to address, hence it is important for the engineer to understand and assess the behaviour of the system to enable its effective design and optimisation. This paper presents a new three-dimensional representation of pipe based water systems and demonstrates a range of innovative methods to convey information to the user. The system presented not only allows the engineer to visualise the various parameters of a network but also allows the user to observe the behaviour and progress of an iterative optimisation method. This paper contains examples of the combination of the interactive visualisation system and an evolutionary algorithm enabling the user to track and visualise the actions of the algorithm down to an individual pipe diameter change. It is proposed that this interactive visualisation system will provide engineers an unprecedented view of the way in which optimisation algorithms interact with a network model and may pave the way for greater interaction between engineer, network and optimiser in the futur

    A Young Planet Search in Visible and IR Light: DN Tau, V836 Tau, and V827 Tau

    Full text link
    In searches for low-mass companions to late-type stars, correlation between radial velocity variations and line bisector slope changes indicates contamination by large starspots. Two young stars demonstrate that this test is not sufficient to rule out starspots as a cause of radial velocity variations. As part of our survey for substellar companions to T Tauri stars, we identified the ~2 Myr old planet host candidates DN Tau and V836 Tau. In both cases, visible light radial velocity modulation appears periodic and is uncorrelated with line bisector span variations, suggesting close companions of several M_Jup in these systems. However, high-resolution, infrared spectroscopy shows that starspots cause the radial velocity variations. We also report unambiguous results for V827 Tau, identified as a spotted star on the basis of both visible light and infrared spectroscopy. Our results suggest that infrared follow up observations are critical for determining the source of radial velocity modulation in young, spotted stars.Comment: Accepted for publication in the Astrophysical Journal Letter

    Multi-objective pipe smoothing genetic algorithm for water distribution network design

    Get PDF
    Session S6-03, Special Session: Evolutionary Computing in Water Resources Planning and Management IIIThis paper describes the formulation of a Multi-objective Pipe Smoothing Genetic Algorithm (MOPSGA) and its application to the least cost water distribution network design problem. Evolutionary Algorithms have been widely utilised for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we present a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm whilst promoting engineering feasibility within the population of solutions. MOPSGA is based upon the standard Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and incorporates a modified population initialiser and mutation operator which directly targets elements of a network with the aim to increase network smoothness (in terms of progression from one diameter to the next) using network element awareness and an elementary heuristic. The pipe smoothing heuristic used in this algorithm is based upon a fundamental principle employed by water system engineers when designing water distribution pipe networks where the diameter of any pipe is never greater than the sum of the diameters of the pipes directly upstream resulting in the transition from large to small diameters from source to the extremities of the network. MOPSGA is assessed on a number of water distribution network benchmarks from the literature including some real-world based, large scale systems. The performance of MOPSGA is directly compared to that of NSGA-II with regard to solution quality, engineering feasibility (network smoothness) and computational efficiency. MOPSGA is shown to promote both engineering and hydraulic feasibility whilst attaining good infrastructure costs compared to NSGA-II

    The Far-Ultraviolet Spectra of TW Hya. II. Models of H2 Fluorescence in a Disk

    Full text link
    We measure the temperature of warm gas at planet-forming radii in the disk around the classical T Tauri star (CTTS) TW Hya by modelling the H2 fluorescence observed in HST/STIS and FUSE spectra. Strong Ly-alpha emission irradiates a warm disk surface within 2 AU of the central star and pumps certain excited levels of H2. We simulate a 1D plane-parallel atmosphere to estimate fluxes for the 140 observed H2 emission lines and to reconstruct the Ly-alpha emission profile incident upon the warm H2. The excitation of H2 can be determined from relative line strengths by measuring self-absorption in lines with low-energy lower levels, or by reconstructing the Ly-alpha profile incident upon the warm H2 using the total flux from a single upper level and the opacity in the pumping transition. Based on those diagnostics, we estimate that the warm disk surface has a column density of log N(H2)=18.5^{+1.2}_{-0.8}, a temperature T=2500^{+700}_{-500} K, and a filling factor of H2, as seen by the source of Ly-alpha emission, of 0.25\pm0.08 (all 2-sigma error bars). TW Hya produces approximately 10^{-3} L_\odot in the FUV, about 85% of which is in the Ly-alpha emission line. From the H I absorption observed in the Ly-alpha emission, we infer that dust extinction in our line of sight to TW Hya is negligible.Comment: Accepted by ApJ. 26 pages, 17 figures, 6 table

    Applicability of ERTS-1 to Montana geology

    Get PDF
    The author has identified the following significant results. Late autumn imagery provides the advantages of topographic shadow enhancement and low cloud cover. Mapping of rock units was done locally with good results for alluvium, basin fill, volcanics, inclined Paleozoic and Mesozoic beds, and host strata of bentonite beds. Folds, intrusive domes, and even dip directions were mapped where differential erosion was significant. However, mapping was not possible for belt strata, was difficult for granite, and was hindered by conifers compared to grass cover. Expansion of local mapping required geologic control and encountered significant areas unmappable from ERTS imagery. Annotation of lineaments provided much new geologic data. By extrapolating test site comparisons, it is inferred that 27 percent of some 1200 lineaments mapped from western Montana represent unknown faults. The remainder appear to be localized mainly by undiscovered faults and sets of minor faults or joints

    The Magnetic Fields of Classical T Tauri Stars

    Full text link
    We report new magnetic field measurements for 14 classical T Tauri stars (CTTSs). We combine these data with one previous field determination in order to compare our observed field strengths with the field strengths predicted by magnetospheric accretion models. We use literature data on the stellar mass, radius, rotation period, and disk accretion rate to predict the field strength that should be present on each of our stars according to these magnetospheric accretion models. We show that our measured field values do not correlate with the field strengths predicted by simple magnetospheric accretion theory. We also use our field strength measurements and literature X-ray luminosity data to test a recent relationship expressing X-ray luminosity as a function of surface magnetic flux derived from various solar feature and main sequence star measurements. We find that the T Tauri stars we have observed have weaker than expected X-ray emission by over an order of magnitude on average using this relationship. We suggest the cause for this is actually a result of the very strong fields on these stars which decreases the efficiency with which gas motions in the photosphere can tangle magnetic flux tubes in the corona.Comment: 25 pages, 5 figure

    Resolved stellar population of distant galaxies in the ELT era

    Full text link
    The expected imaging capabilities of future Extremely Large Telescopes (ELTs) will offer the unique possibility to investigate the stellar population of distant galaxies from the photometry of the stars in very crowded fields. Using simulated images and photometric analysis we explore here two representative science cases aimed at recovering the characteristics of the stellar populations in the inner regions of distant galaxies. Specifically: case A) at the center of the disk of a giant spiral in the Centaurus Group, (mu B~21, distance of 4.6 Mpc); and, case B) at half of the effective radius of a giant elliptical in the Virgo Cluster (mu~19.5, distance of 18 Mpc). We generate synthetic frames by distributing model stellar populations and adopting a representative instrumental set up, i.e. a 42 m Telescope operating close to the diffraction limit. The effect of crowding is discussed in detail showing how stars are measured preferentially brighter than they are as the confusion limit is approached. We find that (i) accurate photometry (sigma~0.1, completeness >90%) can be obtained for case B) down to I~28.5, J~27.5 allowing us to recover the stellar metallicity distribution in the inner regions of ellipticals in Virgo to within ~0.1 dex; (ii) the same photometric accuracy holds for the science case A) down to J~28.0, K~27.0, enabling to reconstruct of the star formation history up to the Hubble time via simple star counts in diagnostic boxes. For this latter case we discuss the possibility of deriving more detailed information on the star formation history from the analysis of their Horizontal Branch stars. We show that the combined features of high sensitivity and angular resolution of ELTs may open a new era for our knowledge of the stellar content of galaxies of different morphological type up to the distance of the Virgo cluster.Comment: 21 pages, 17 figures, PASP accepted in pubblicatio

    Applicability of ERTS-1 to lineament and photogeologic mapping in Montana: Preliminary report

    Get PDF
    A lineament map prepared from a mosaic of western Montana shows about 85 lines not represented on the state geologic map, including elements of a northeast-trending set through central western Montana which merit ground truth checking and consideration in regional structural analysis. Experimental fold annotation resulted in a significant local correction to the state geologic map. Photogeologic mapping studies produced only limited success in identification of rock types, but they did result in the precise delineation of a late Cretaceous or early Tertiary volcanic field (Adel Mountain field) and the mapping of a connection between two granitic bodies shown on the state map. Imagery was used successfully to map clay pans associated with bentonite beds in gently dipping Bearpaw Shale. It is already apparent that ERTS imagery should be used to facilitate preparation of a much needed statewide tectonic map and that satellite imagery mapping, aided by ground calibration, provides and economical means to discover and correct errors in the state geologic map
    • 

    corecore