257 research outputs found

    Higher education outcomes, graduate employment and university performance indicators

    Get PDF
    Official employment-related Performance Indicators in UK Higher Education are based on the population of students responding to the First Destination Supplement (FDS). This generates potentially biased performance indicators as this population of students is not necessarily representative of the full population of leavers from each institution. University leavers not obtaining qualifications and those not responding to the FDS are not included within the official analysis. We compare an employment-related performance indicator based on those students responding to the FDS with alternative approaches which address the potential non-random nature of this sub-group of university leavers

    University rankings:What do they really show?

    Get PDF
    University rankings as developed by the media are used by many stakeholders in higher education: students looking for university places; academics looking for university jobs; university managers who need to maintain standing in the competitive arena of student recruitment; and governments who want to know that public funds spent on universities are delivering a world class higher education system. Media rankings deliberately draw attention to the performance of each university relative to all others, and as such they are undeniably simple to use and interpret. But one danger is that they are potentially open to manipulation and gaming because many of the measures underlying the rankings are under the control of the institutions themselves. This paper examines media rankings (constructed from an amalgamation of variables representing performance across numerous dimensions) to reveal the problems with using a composite index to reflect overall performance. It ends with a proposal for an alternative methodology which leads to groupings rather than point estimates

    High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011–2012 drought in England

    Get PDF
    This paper uses high-frequency bankside measurements from three catchments selected as part of the UK government-funded Demonstration Test Catchments (DTC) project. We compare the hydrological and hydrochemical patterns during the water year 2011–2012 from the Wylye tributary of the River Avon with mixed land use, the Blackwater tributary of the River Wensum with arable land use and the Newby Beck tributary of the River Eden with grassland land use. The beginning of the hydrological year was unusually dry and all three catchments were in states of drought. A sudden change to a wet summer occurred in April 2012 when a heavy rainfall event affected all three catchments. The year-long time series and the individual storm responses captured by in situ nutrient measurements of nitrate and phosphorus (total phosphorus and total reactive phosphorus) concentrations at each site reveal different pollutant sources and pathways operating in each catchment. Large storm-induced nutrient transfers of nitrogen and or phosphorus to each stream were recorded at all three sites during the late April rainfall event. Hysteresis loops suggested transport-limited delivery of nitrate in the Blackwater and of total phosphorus in the Wylye and Newby Beck, which was thought to be exacerbated by the dry antecedent conditions prior to the storm. The high rate of nutrient transport in each system highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to rivers from diffuse agricultural sources. It also highlights the scale of the challenge in adapting to future extreme weather events under a changing climate

    Rapid depletion of dissolved organic sulphur (DOS) in freshwaters

    Get PDF
    Sulphur (S) is a key macronutrient for all organisms, with similar cellular requirements to that of phosphorus (P). Studies of S cycling have often focused on the inorganic fraction, however, there is strong evidence to suggest that freshwater microorganisms may also access dissolved organic S (DOS) compounds (e.g. S-containing amino acids). The aim of this study was to compare the relative concentration and depletion rates of organic 35S-labelled amino acids (cysteine, methionine) with inorganic S (Na235SO4) in oligotrophic versus mesotrophic river waters draining from low nutrient input and moderate nutrient input land uses respectively. Our results showed that inorganic SO42− was present in the water column at much higher concentrations than free amino acids. In contrast to SO42−, however, cysteine and methionine were both rapidly depleted from the mesotrophic and oligotrophic waters with a halving time < 1 h. Only a small proportion of the DOS removed from solution was mineralized and excreted as SO42− (< 16% of the total taken up) suggesting that the DOS could be satisfying a demand for carbon (C) and S. In conclusion, even though inorganic S was abundant in freshwater, it appears that the aquatic communities retained the capacity to take up and assimilate DOS

    Efficiency of European public higher education institutions: a two-stage multicountry approach

    Get PDF
    The purpose of this study is to examine efficiency and its determinants in a set of higher education institutions (HEIs) from several European countries by means of non-parametric frontier techniques. Our analysis is based on a sample of 259 public HEIs from 7 European countries across the time period of 2001–2005. We conduct a two-stage DEA analysis (Simar and Wilson in J Economet 136:31–64, 2007), first evaluating DEA scores and then regressing them on potential covariates with the use of a bootstrapped truncated regression. Results indicate a considerable variability of efficiency scores within and between countries. Unit size (economies of scale), number and composition of faculties, sources of funding and gender staff composition are found to be among the crucial determinants of these units’ performance. Specifically, we found evidence that a higher share of funds from external sources and a higher number of women among academic staff improve the efficiency of the institution

    High-resolution monitoring of catchment nutrient response to the end of the 2011-2012 drought in England, captured by the demonstration test catchments.

    Get PDF
    The Demonstration Test Catchments (DTC) project is a UK Government funded initiative to test the effectiveness of on-farm mitigation measures designed to reduce agricultural pollution without compromising farm productivity. Three distinct catchments in England have been chosen to test the efficacy of mitigation measures on working farms in small tributary sub-catchments equipped with continuous water quality monitoring stations. The Hampshire Avon in the south is a mixed livestock and arable farming catchment, the River Wensum in the east is a lowland catchment with predominantly arable farming and land use in the River Eden catchment in the north-west is predominantly livestock farming. One of the many strengths of the DTC as a national research platform is that it provides the ability to investigate catchment hydrology and biogeochemical response across different landscapes and geoclimatic characteristics, with a range of differing flow behaviours, geochemistries and nutrient chemistries. Although numerous authors present studies of individual catchment responses to storms, no studies exist of multiple catchment responses to the same rainfall event captured with in situ high-resolution nutrient monitoring at a national scale. This paper brings together findings from all three DTC research groups to compare the response of the catchments to a major storm event in April 2012. This was one of the first weather fronts to track across the country following a prolonged drought period affecting much of the UK through 2011–2012, marking an unusual meteorological transition when a rapid shift from drought to flood risk occurred. The effects of the weather front on discharge and water chemistry parameters, including nitrogen species (NO3-N and NH4-N) and phosphorus fractions (total P (TP) and total reactive P (TRP)), measured at a half-hourly time step are examined. When considered in the context of one hydrological year, flow and concentration duration curves reveal that the weather fronts resulted in extreme flow, nitrate and TP concentrations in all three catchments but with distinct differences in both hydrographs and chemographs. Hysteresis loops constructed from high resolution data are used to highlight an array of potential pollutant sources and delivery pathways. In the Hampshire Avon DTC, transport was dominated by sub-surface processes, where phosphorus, largely in the soluble form, was found to be transport-limited. In the Wensum DTC, transport was largely dominated by rapid sub-surface movement due to the presence of under-drainage, which mobilised large quantities of nitrate during the storm. In the Eden DTC, transport was found to be initially dominated by surface runoff, which switched to subsurface delivery on the falling limb of the hydrograph, with the surface delivery transporting large amounts of particulate phosphorus to the river, with a transport-limited response. The lack of exhaustion of nutrient delivery in response to such extreme flow generation indicates the size of the nutrient pools stored in these catchments, and highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to UK river systems from diffuse agricultural sources
    corecore