19 research outputs found

    Impact of Bacillus Calmette–Guérin Moreau vaccine on lung remodeling in experimental asthma

    Get PDF
    AbstractWe analyzed the effects of different administration routes and application times of the BCG-Moreau strain on airway and lung inflammation and remodeling in a murine model of allergic asthma. BALB/c mice (n=168) were divided into two groups. The first group received BCG-Moreau strain while the second group received saline using the same protocol. BCG or saline were intradermally or intranasally injected one or two months before the induction of asthma. Mice were further sensitized and challenged with ovalbumin or received saline. Twenty-four hours after the last challenge, BCG prevented the triggering of pro-inflammatory cytokines, probably by increasing Foxp3 and interleukin (IL)-10, modulating eosinophil infiltration and collagen fiber deposition, thus reducing airway hyperresponsiveness. In conclusion, BCG-Moreau prevented lung remodeling in the present model of allergic asthma, regardless of administration route and time of vaccination. These beneficial effects may be related to the increase in regulatory T cells and to IL-10 production in tandem with decreased Th2 cytokines (IL-4, IL-5, and IL-13)

    Endotoxin-Induced Emphysema Exacerbation: A Novel Model of Chronic Obstructive Pulmonary Disease Exacerbations Causing Cardiopulmonary Impairment and Diaphragm Dysfunction

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a progressive disorder of the lung parenchyma which also involves extrapulmonary manifestations, such as cardiovascular impairment, diaphragm dysfunction, and frequent exacerbations. The development of animal models is important to elucidate the pathophysiology of COPD exacerbations and enable analysis of possible therapeutic approaches. We aimed to characterize a model of acute emphysema exacerbation and evaluate its consequences on the lung, heart, and diaphragm. Twenty-four Wistar rats were randomly assigned into one of two groups: control (C) or emphysema (ELA). In ELA group, animals received four intratracheal instillations of pancreatic porcine elastase (PPE) at 1-week intervals. The C group received saline under the same protocol. Five weeks after the last instillation, C and ELA animals received saline (SAL) or E. coli lipopolysaccharide (LPS) (200 μg in 200 μl) intratracheally. Twenty-four hours after saline or endotoxin administration, arterial blood gases, lung inflammation and morphometry, collagen fiber content, and lung mechanics were analyzed. Echocardiography, diaphragm ultrasonography (US), and computed tomography (CT) of the chest were done. ELA-LPS animals, compared to ELA-SAL, exhibited decreased arterial oxygenation; increases in alveolar collapse (p < 0.0001), relative neutrophil counts (p = 0.007), levels of cytokine-induced neutrophil chemoattractant-1, interleukin (IL)-1β, tumor necrosis factor-α, IL-6, and vascular endothelial growth factor in lung tissue, collagen fiber deposition in alveolar septa, airways, and pulmonary vessel walls, and dynamic lung elastance (p < 0.0001); reduced pulmonary acceleration time/ejection time ratio, (an indirect index of pulmonary arterial hypertension); decreased diaphragm thickening fraction and excursion; and areas of emphysema associated with heterogeneous alveolar opacities on chest CT. In conclusion, we developed a model of endotoxin-induced emphysema exacerbation that affected not only the lungs but also the heart and diaphragm, thus resembling several features of human disease. This model of emphysema should allow preclinical testing of novel therapies with potential for translation into clinical practice

    Effects of Bone Marrow Mesenchymal Stromal Cell Therapy in Experimental Cutaneous Leishmaniasis in BALB/c Mice Induced by Leishmania amazonensis

    Get PDF
    Cutaneous leishmaniasis remains both a public health and a therapeutic challenge. To date, no ideal therapy for cutaneous leishmaniasis has been identified, and no universally accepted therapeutic regimen and approved vaccines are available. Due to the mesenchymal stromal cell (MSC) immunomodulatory capacity, they have been applied in a wide variety of disorders, including infectious, inflammatory, and allergic diseases. We evaluated the potential effects of bone marrow MSC therapy in a murine model of cutaneous leishmaniasis. In vitro, coculture of infected macrophages with MSC increased parasite load on macrophages in comparison with controls (macrophages without MSCs). In vivo, BALB/c mice were infected with 2 × 106Leishmania amazonensis (Josefa strain) promastigotes in the footpad. 7 and 37 days after infection, animals were treated with 1 × 105 MSCs, either intralesional (i.l.), i.e., in the same site of infection, or intravenously (i.v.), through the external jugular vein. Control animals received the same volume (50 µL) of phosphate-buffered saline by i.l. or i.v. routes. The lesion progression was assessed by its thickness measured by pachymetry. Forty-two days after infection, animals were euthanized and parasite burden in the footpad and in the draining lymph nodes was quantified by the limiting dilution assay (LDA), and spleen cells were phenotyped by flow cytometry. No significant difference was observed in lesion progression, regardless of the MSC route of administration. However, animals treated with i.v. MSCs presented a significant increase in parasite load in comparison with controls. On the other hand, no harmful effect due to MSCs i.l. administered was observed. The spleen cellular profile analysis showed an increase of IL-10 producing T CD4+ and TCD8+ cells in the spleen only in mice treated with i.v. MSC. The excessive production of IL-10 could be associated with the disease-aggravating effects of MSC therapy when intravenously administered. As a conclusion, in the current murine model of L. amazonensis-induced cutaneous disease, MSCs did not control the damage of cutaneous disease and, depending on the administration route, it could result in deleterious effects

    ALGORITM contribution

    No full text
    Researcher project supported by EU Maria Skaldowska-Curie fellowship (ALGORITM 895134)

    Early Career Members at the ERS Lung Science Conference 2020: metabolic alterations in lung ageing and disease

    Get PDF
    Every year, the European Respiratory Society (ERS) organises the Lung Science Conference (LSC) in Estoril, Portugal, to discuss basic and translational science. The topic of the LSC 2020 was “Metabolic alterations in lung ageing and disease”. In addition to an outstanding scientific programme, the LSC provides excellent opportunities for career development and inclusion of Early Career Members (ECMs). All scientific and poster sessions are chaired by an ECM who is paired with a senior faculty member to allow ECMs to become acquainted with session chairing. In addition, 40 travel bursaries are made available to abstract authors and all bursary recipients are invited to take part in a mentorship lunch. Moreover, there is a session organised by the Early Career Members Committee (ECMC) dedicated to career development. Here, we describe the scientific highlights of LSC 2020 for those who could not attend. The ERS presents several awards at the LSC and here we will highlight all winners of the LSC 2020 awards. The five highest ranked abstracts from ECMs are presented during the Young investigator session. Patricia Ogger (UK) was presented with the William MacNee Award for the best presentation in this session. Several abstracts were selected for programmed oral presentations and Renata Jurkowska (UK) was presented with the inaugural Geoffrey Laurent Award for the best oral presentation. Moreover, the organisers presented eight Distinguished Poster awards to Anne-Sophie Lamort (Germany), Julia Frankenberg Garcia (UK), Johnatas Silva (UK), Pauline Esteves (France), Claudio Bussi (UK), Elodie Picard (France), Felix Ritzmann (Germany) and Alen Faiz (Australia) for their excellent contributions during the poster session

    Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS

    No full text
    Alveolar epithelial-capillary barrier disruption is a hallmark of acute respiratory distress syndrome (ARDS). Contribution of mitochondrial dysfunction to the compromised alveolar-capillary barrier in ARDS remains unclear. Mesenchymal stromal cells-derived extracellular vesicles (MSC-EVs) are considered as a cell-free therapy for ARDS. Mitochondrial transfer was shown to be important for the therapeutic effects of MSCs and MSC-EVs. Here we investigated the contribution of mitochondrial dysfunction to the injury of alveolar epithelial and endothelial barriers in ARDS and the ability of MSC-EVs to modulate alveolar-capillary barrier integrity through mitochondrial transfer.Primary human small airway epithelial and pulmonary microvascular endothelial cells and human precision cut lung slices (PCLSs) were stimulated with endotoxin or plasma samples from patients with ARDS and treated with MSC-EVs, barrier properties and mitochondrial functions were evaluated. Lipopolysaccharide (LPS)-injured mice were treated with MSC-EVs and degree of lung injury and mitochondrial respiration of the lung tissue were assessed.Inflammatory stimulation resulted in increased permeability coupled with pronounced mitochondrial dysfunction in both types of primary cells and PCLSs. Extracellular vesicles derived from normal MSCs restored barrier integrity and normal levels of oxidative phosphorylation while an extracellular vesicles preparation which did not contain mitochondria was not effective. In vivo, presence of mitochondria was critical for extracellular vesicles ability to reduce lung injury and restore mitochondrial respiration in the lung tissue.In the ARDS environment, MSC-EVs improve alveolar-capillary barrier properties through restoration of mitochondrial functions at least partially via mitochondrial transfer

    Expanded endothelial progenitor cells mitigate lung injury in septic mice

    Get PDF
    Submitted by sandra infurna ([email protected]) on 2016-03-22T16:54:16Z No. of bitstreams: 1 tataina_gutierrez_etal_IOC_2015.pdf: 942633 bytes, checksum: 816a2181c5a43c3038245cde47196e7a (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-03-22T17:10:21Z (GMT) No. of bitstreams: 1 tataina_gutierrez_etal_IOC_2015.pdf: 942633 bytes, checksum: 816a2181c5a43c3038245cde47196e7a (MD5)Made available in DSpace on 2016-03-22T17:10:21Z (GMT). No. of bitstreams: 1 tataina_gutierrez_etal_IOC_2015.pdf: 942633 bytes, checksum: 816a2181c5a43c3038245cde47196e7a (MD5) Previous issue date: 2015Technische Universität Dresden. University Hospital Dresden. Department of Anesthesiology and Intensive Care Medicine. Dredesm Germany / Universidade Federal do Rio de Janeiro. Centro de Ciências da Saúde. Instituto de Biofísica Carlos Chagas Filho (IBCCF). Laboratório de Investigação Pulmonar. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Centro de Ciências da Saúde. Instituto de Biofísica Carlos Chagas Filho (IBCCF). Laboratório de Investigação Pulmonar. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Centro de Ciências da Saúde. Instituto de Biofísica Carlos Chagas Filho (IBCCF). Laboratório de Investigação Pulmonar. Rio de Janeiro, RJ, BrasilUniversidade Federal do Rio de Janeiro. Centro de Ciências da Saúde. Instituto de Biofísica Carlos Chagas Filho (IBCCF). Laboratório de Investigação Pulmonar. Rio de Janeiro, RJ, BrasilPontifícia Universidade Católica do Paraná. Centro de Tecnologia Celular. Curitiba, PR, Brasil.Universidade Federal do Rio de Janeiro. Centro de Ciências da Saúde. Instituto de Biofísica Carlos Chagas Filho (IBCCF). Laboratório de Investigação Pulmonar. Rio de Janeiro, RJ, BrasilUniversidade Federal do Rio de Janeiro. Centro de Ciências da Saúde. Instituto de Biofísica Carlos Chagas Filho (IBCCF). Laboratório de Investigação Pulmonar. Rio de Janeiro, RJ, BrasilPontifícia Universidade Católica do Paraná. Centro de Tecnologia Celular. Curitiba, PR, Brasil.Technische Universität Dresden. University Hospital Dresden. Department of Anesthesiology and Intensive Care Medicine. Dredesm Germany.Universidade Federal do Rio de Janeiro. Centro de Ciências da Saúde. Instituto de Biofísica Carlos Chagas Filho (IBCCF). Laboratório de Investigação Pulmonar. Rio de Janeiro, RJ, Brasil.Endothelial progenitor cells (EPCs) improve survival and reduce organ failure in cecal ligation and puncture-induced sepsis; however, expanded EPCs may represent an even better approach for vascular repair. To date, no study has compared the effects of non-expanded EPCs (EPC-NEXP) with those of expanded EPCs (EPC-EXP) and mesenchymal stromal cells of human (MSC-HUMAN) and mouse (MSC-MICE) origin in experimental sepsis. One day after cecal ligation and puncture sepsis induction, BALB/c mice were randomized to receive saline, EPC-EXP, EPC-NEXP, MSC-HUMAN or MSC-MICE (1 × 105 ) intravenously. EPC-EXP, EPC-NEXP, MSC-HUMAN, and MSC-MICE displayed differences in phenotypic characterization. On days 1 and 3, cecal ligation and puncture mice showed decreased survival rate, and increased elastance, diffuse alveolar damage, and levels of interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α, vascular endothelial growth factor, and platelet-derived growth factor in lung tissue. EPC-EXP and MSC-HUMAN had reduced elastance, diffuse alveolar damage, and platelet-derived growth factor compared to no-cell treatment. Tumor necrosis factor-α levels decreased in the EPC-EXP, MSC-HUMAN, and MSC-MICE groups. IL-1β levels decreased in the EPC-EXP group, while IL-10 decreased in the MSC-MICE. IL-6 levels decreased both in the EPC-EXP and MSC-MICE groups. Vascular endothelial growth factor levels were reduced regardless of therapy. In conclusion, EPC-EXP and MSC-HUMAN yielded better lung function and reduced histologic damage in septic mice

    Mesenchymal stromal cells-derived extracellular vesicles reprogramme macrophages in ARDS models through the miR-181a-5p-PTEN-pSTAT5-SOCS1 axis

    No full text
    Rationale A better understanding of the mechanism of action of mesenchymal stromal cells (MSCs) and their extracellular vesicles (EVs) is needed to support their use as novel therapies for acute respiratory distress syndrome (ARDS). Macrophages are important mediators of ARDS inflammatory response. Suppressor of cytokine signalling (SOCS) proteins are key regulators of the macrophage phenotype switch. We therefore investigated whether SOCS proteins are involved in mediation of the MSC effect on human macrophage reprogramming.Methods Human monocyte-derived macrophages (MDMs) were stimulated with lipopolysaccharide (LPS) or plasma samples from patients with ARDS (these samples were previously classified into hypo-inflammatory and hyper-inflammatory phenotype) and treated with MSC conditioned medium (CM) or EVs. Protein expression was measured by Western blot. EV micro RNA (miRNA) content was determined by miRNA sequencing. In vivo: LPS-injured C57BL/6 mice were given EVs isolated from MSCs in which miR-181a had been silenced by miRNA inhibitor or overexpressed using miRNA mimic.Results EVs were the key component of MSC CM responsible for anti-inflammatory modulation of human macrophages. EVs significantly reduced secretion of tumour necrosis factor-α and interleukin-8 by LPS-stimulated or ARDS plasma-stimulated MDMs and this was dependent on SOCS1. Transfer of miR-181a in EVs downregulated phosphatase and tensin homolog (PTEN) and subsequently activated phosphorylated signal transducer and activator of transcription 5 (pSTAT5) leading to upregulation of SOCS1 in macrophages. In vivo, EVs alleviated lung injury and upregulated pSTAT5 and SOCS1 expression in alveolar macrophages in a miR181-dependent manner. Overexpression of miR-181a in MSCs significantly enhanced therapeutic efficacy of EVs in this model.Conclusion miR-181a-PTEN-pSTAT5-SOCS1 axis is a novel pathway responsible for immunomodulatory effect of MSC EVs in ARDS
    corecore