890 research outputs found

    "The Interpreters": A Handbook to AE and the Irish Revival

    Get PDF

    Recent Media Treatments of the Titanic Tragedy

    Get PDF

    A Comparative Astrochemical Study Of The High-Mass Protostellar Objects NGC 7538 IRS 9 and IRS 1

    Get PDF
    We report the results of a spectroscopic study of the high-mass protostellar object NGC 7538 IRS 9 and compare our observations to published data on the nearby object NGC 7538 IRS 1. Both objects originated in the same molecular cloud and appear to be at different points in their evolutionary histo- ries, offering an unusual opportunity to study the temporal evolution of envelope chemistry in objects sharing a presumably identical starting composition. Observations were made with the Texas Echelon Cross Echelle Spectrograph (TEXES), a sensitive, high spectral resolution (R = {\lambda}/{\Delta}{\lambda} \simeq 100,000) mid-infrared grating spectrometer. Forty-six individual lines in vibrational modes of the molecules C2H2, CH4, HCN, NH3 and CO were detected, including two isotopologues (13CO, 12C18O) and one combination mode ({\nu}4 + {\nu}5 C2H2). Fitting synthetic spectra to the data yielded the Doppler shift, excitation temperature, Doppler b parameter, column density and covering factor for each molecule observed; we also computed column density upper limits for lines and species not detected, such as HNCO and OCS. We find differences among spectra of the two objects likely attributable to their differing radiation and thermal environments. Temperatures and column densities for the two objects are generally consistent, while the larger line widths toward IRS 9 result in less saturated lines than those toward IRS 1. Finally, we compute an upper limit on the size of the continuum-emitting region (\sim2000 AU) and use this constraint and our spectroscopy results to construct a schematic model of IRS 9.Comment: 23 pages, 15 figures, 6 tables; accepted for publication in Ap

    Draft genome sequences of 64 type strains of 50 species and 25 subspecies of the genus Staphylococcus Rosenbach 1884

    Get PDF
    Members of the genus Staphylococcus have been isolated from humans, animals, and the environment. Accurate identification with whole-genome sequencing requires access to data derived from type strains. We provide sequence data for type strains of 64 taxa in the genus that at the time of this writing have standing in the nomenclatur

    Prospectus, December 13, 1989

    Get PDF
    https://spark.parkland.edu/prospectus_1989/1032/thumbnail.jp

    Gene conversion in human rearranged immunoglobulin genes

    Get PDF
    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V<sub>H</sub> segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V<sub>H</sub> replacements with no addition of untemplated nucleotides at the V<sub>H</sub>–V<sub>H</sub> joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V<sub>H</sub> replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion

    Design Specification for a Thrust-Vectoring, Actuated-Nose-Strake Flight Control Law for the High-Alpha Research Vehicle

    Get PDF
    Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees

    IN-SYNC II: Virial Stars from Sub-Virial Cores -- The Velocity Dispersion of Embedded Pre-Main-Sequence Stars in NGC 1333

    Get PDF
    The initial velocity dispersion of newborn stars is a major unconstrained aspect of star formation theory. Using near-infrared spectra obtained with the APOGEE spectrograph, we show that the velocity dispersion of young (1-2 Myr) stars in NGC 1333 is 0.92+/-0.12 km/s after correcting for measurement uncertainties and the effect of binaries. This velocity dispersion is consistent with the virial velocity of the region and the diffuse gas velocity dispersion, but significantly larger than the velocity dispersion of the dense, star-forming cores, which have a sub-virial velocity dispersion of 0.5 km/s. Since the NGC 1333 cluster is dynamically young and deeply embedded, this measurement provides a strong constraint on the initial velocity dispersion of newly-formed stars. We propose that the difference in velocity dispersion between stars and dense cores may be due to the influence of a 70 micro-Gauss magnetic field acting on the dense cores, or be the signature of a cluster with initial sub-structure undergoing global collapse.Comment: Accepted to ApJ. 23 pages, 9 figures and 3 table
    • …
    corecore