319 research outputs found

    Protease Inhibitor Resistance Is Uncommon in HIV-1 Subtype C Infected Patients on Failing Second-Line Lopinavir/r-Containing Antiretroviral Therapy in South Africa

    Get PDF
    Limited data exist on HIV-1 drug resistance patterns in South Africa following second-line protease-inhibitor containing regimen failure. This study examined drug resistance patterns emerging in 75 HIV-1 infected adults experiencing virologic failure on a second-line regimen containing 2 NRTI and lopinavir/ritonavir. Ninety six percent of patients (n = 72) were infected with HIV-1 subtype C, two patients were infected with HIV-1 subtype D and one with HIV-1 subtype A1. Thirty nine percent (n = 29) of patients had no resistance mutations in protease or reverse transcriptase suggesting that medication non-adherence was a major factor contributing to failure. Major lopinavir resistance mutations were infrequent (5 of 75; 7%), indicating that drug resistance is not the main barrier to future viral suppression

    Human antibody VH domains targeting uPAR as candidate therapeutics for cancers

    Get PDF
    The high expression of uPAR has been linked to tumor progression, invasion, and metastasis in several types of cancer. Such overexpression of uPAR makes it a potential target for immunotherapies across common cancers such as breast, colorectal, lung, ovarian cancer, and melanoma. In our study, two high-affinity and specific human VH domain antibody candidates, designed as clones 3 and 115, were isolated from a phage-displayed human VH antibody library. Domain-based bispecific T- cell engagers (DbTE) based on these two antibodies exhibited potent killing of uPAR-positive cancer cells. Thus, these two anti-uPAR domain antibodies are promising candidates for treating uPAR positive cancers

    Emerging antiretroviral drug resistance in sub-Saharan Africa: novel affordable technologies are needed to provide resistance testing for individual and public health benefits

    Get PDF
    In industrialized countries, viral load monitoring and genotypic antiretroviral drug resistance testing (GART) play an important role in the selection of initial and subsequent combination antiretroviral therapy (cART) regimens. In contrast, resource constraints in Africa limit access to assays that could detect virologic failure, transmitted drug resistance (TDR) and acquired drug resistance to cART. This has adverse consequences for both individual and public health. Although the further roll-out of antiretrovirals for prevention, including preexposure prophylaxis (PrEP) and universal test and treat (UTT) strategies, could reduce HIV-1 incidence, these strategies may increase TDR [1,2]. Here, we present arguments that the scale up of antiretrovirals use should be accompanied by cost-effective assays for early detection of virologic failure, surveillance of TDR and GART for individual patient management

    Prevalence of HIV-1 Drug Resistance among Women Screening for HIV Prevention Trials in KwaZulu-Natal, South Africa (MTN-009)

    Get PDF
    Background:A major concern with using antiretroviral (ARV)-based products for HIV prevention is the potential spread of drug resistance, particularly from individuals who are HIV-infected but unaware of their status. Limited data exist on the prevalence of HIV infection or drug resistance among potential users of ARV-based prevention products.Methods:A cross-sectional study of reproductive-aged women who presented to screen for an HIV prevention trial was conducted at 7 clinical sites in Durban, South Africa. CD4+T cell counts, HIV-1 RNA levels and population sequencing of the protease and reverse transcriptase genes were performed for all women with 2 positive HIV rapid tests. Resistance mutations were identified using the Stanford Calibrated Population Resistance Tool.Results:Of the 1073 evaluable women, 400(37%) were confirmed as HIV-infected. Of those, plasma HIV-1 RNA was detectable in 365/400(91%) and undetectable(200 copies/ml) analyzed for drug resistance, 26(7.4%) had nucleoside reverse transcriptase inhibitor (NRTI), non-nucleoside reverse transcriptase inhibitor (NNRTI) or protease inhibitor (PI) drug resistance mutations. Among those with resistance, 18/26 participants(62%) had single-class NNRTI resistance and 5/26(19%) had dual-class NRTI/NNRTI. Major mutations in reverse transcriptase included K65R(n = 1), L74I(n = 1), K103N(n = 19), V106M(n = 4), Y181C(n = 2), M184V(n = 4), and K219E/R(n = 2). Major PI-resistance mutations were rare: M46L(n = 1) and I85V(n = 1). All participants were infected with subtype C virus, except one infected with subtype A.Conclusions:In women from Durban, South Africa screening for an HIV prevention trial, the HIV prevalence was high (37%) and HIV drug resistance prevalence was above 5%. This study highlights the potential challenges faced when implementing an ARV-based prevention product that overlaps with first-line antiretroviral therapy. Effective screening to exclude HIV infection among women interested in uptake of ARV-based HIV prevention will be essential in limiting the spread of ARV resistance

    A Cure for HIV Infection: "Not in My Lifetime" or "Just Around the Corner"?

    Get PDF
    With the advent and stunning success of combination antiretroviral therapy (ART) to prolong and improve quality of life for persons with HIV infection, HIV research has been afforded the opportunity to pivot towards studies aimed at finding "a cure." The mere idea that cure of HIV might be possible has energized researchers and the community towards achieving this goal. Funding agencies, both governmental and private, have targeted HIV cure as a high priority; many in the field have responded to these initiatives and the cure research agenda is robust. In this "salon" two editors of Pathogens and Immunity, Michael Lederman and Daniel Douek ask whether curing HIV is a realistic, scalable objective. We start with an overview perspective and have asked a number of prominent HIV researchers to add to the discussion

    Zidovudine (AZT) Monotherapy Selects for the A360V Mutation in the Connection Domain of HIV-1 Reverse Transcriptase

    Get PDF
    Background: We previously demonstrated in vitro that zidovudine (AZT) selects for A371V in the connection domain and Q509L in ribonuclease H (RNase H) domain of HIV-1 reverse transcriptase (RT) which, together with the thymidine analog mutations D67N, K70R and T215F, confer greater than 100-fold AZT resistance. The goal of the current study was to determine whether AZT monotherapy in HIV-1 infected patients also selects the A371V, Q509L or other mutations in the C-terminal domains of HIV-1 RT. Methodology/Principal Findings: Full-length RT sequences in plasma obtained pre- and post-therapy were compared in 23 participants who received AZT monotherapy from the AIDS Clinical Trials Group study 175. Five of the 23 participants reached a primary study endpoint. Mutations significantly associated with AZT monotherapy included K70R (p = 0.003) and T215Y (p = 0.013) in the polymerase domain of HIV-1 RT, and A360V (p = 0.041) in the connection domain of HIV-1 RT. HIV-1 drug susceptibility assays demonstrated that A360V, either alone or in combination with thymidine analog mutations, decreased AZT susceptibility in recombinant viruses containing participant-derived full-length RT sequences or site-directed mutant RT. Biochemical studies revealed that A360V enhances the AZT-monophosphate excision activity of purified RT by significantly decreasing the frequency of secondary RNase H cleavage events that reduce the RNA/DNA duplex length and promote template/primer dissociation. Conclusions: The A360V mutation in the connection domain of RT was selected in HIV-infected individuals that received AZT monotherapy and contributed to AZT resistance. © 2012 Brehm et al

    Low Frequency of Drug-Resistant Variants Selected by Long-Acting Rilpivirine in Macaques Infected with Simian Immunodeficiency Virus Containing HIV-1 Reverse Transcriptase

    Get PDF
    ABSTRACT Preexposure prophylaxis (PrEP) using antiretroviral drugs is effective in reducing the risk of human immunodeficiency virus type 1 (HIV-1) infection, but adherence to the PrEP regimen is needed. To improve adherence, a long-acting injectable formulation of the nonnucleoside reverse transcriptase (RT) inhibitor rilpivirine (RPV LA) has been developed. However, there are concerns that PrEP may select for drug-resistant mutations during preexisting or breakthrough infections, which could promote the spread of drug resistance and limit options for antiretroviral therapy. To address this concern, we administered RPV LA to macaques infected with simian immunodeficiency virus containing HIV-1 RT (RT-SHIV). Peak plasma RPV levels were equivalent to those reported in human trials and waned over time after dosing. RPV LA resulted in a 2-log decrease in plasma viremia, and the therapeutic effect was maintained for 15 weeks, until plasma drug concentrations dropped below 25 ng/ml. RT mutations E138G and E138Q were detected in single clones from plasma virus in separate animals only at one time point, and no resistance mutations were detected in viral RNA isolated from tissues. Wild-type and E138Q RT-SHIV displayed similar RPV susceptibilities in vitro , whereas E138G conferred 2-fold resistance to RPV. Overall, selection of RPV-resistant variants was rare in an RT-SHIV macaque model despite prolonged exposure to slowly decreasing RPV concentrations following injection of RPV LA

    Raltegravir in second-line antiretroviral therapy in resource-limited settings (SELECT): a randomised, phase 3, non-inferiority study

    Get PDF
    For second-line antiretroviral therapy, WHO recommends a boosted protease inhibitor plus nucleoside or nucleotide reverse transcriptase inhibitors (NRTIs). However, concerns about toxicity and cross-resistance motivated a search for regimens that do not contain NRTIs. We aimed to assess whether boosted lopinavir plus raltegravir would be non-inferior to boosted lopinavir plus NRTIs for virological suppression in resource-limited settings

    Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration

    Get PDF
    The kinetics of HIV-1 decay under treatment depends on the class of antiretrovirals used. Mathematical models are useful to interpret the different profiles, providing quantitative information about the kinetics of virus replication and the cell populations contributing to viral decay. We modeled proviral integration in short- and long-lived infected cells to compare viral kinetics under treatment with and without the integrase inhibitor raltegravir (RAL). We fitted the model to data obtained from participants treated with RAL-containing regimes or with a four-drug regimen of protease and reverse transcriptase inhibitors. Our model explains the existence and quantifies the three phases of HIV-1 RNA decay in RAL-based regimens vs. the two phases observed in therapies without RAL. Our findings indicate that HIV-1 infection is mostly sustained by short-lived infected cells with fast integration and a short viral production period, and by long-lived infected cells with slow integration but an equally short viral production period. We propose that these cells represent activated and resting infected CD4+ T-cells, respectively, and estimate that infection of resting cells represent ~4% of productive reverse transcription events in chronic infection. RAL reveals the kinetics of proviral integration, showing that in short-lived cells the pre-integration population has a half-life of ~7 hours, whereas in long-lived cells this half-life is ~6 weeks. We also show that the efficacy of RAL can be estimated by the difference in viral load at the start of the second phase in protocols with and without RAL. Overall, we provide a mechanistic model of viral infection that parsimoniously explains the kinetics of viral load decline under multiple classes of antiretrovirals
    corecore