338 research outputs found

    Survey of sediment quality in Sabine Lake, Texas and vicinity

    Get PDF
    The toxicity of sediments in Sabine Lake, Texas, and adjoining Intracoastal Waterway canals was determined as part of bioeffects assessment studies managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. Surficial sediment samples were collected during August, 1995 from 66 randomly-chosen locations. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; and induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts of the sediments. Chemical analyses were performed on portions of each sample to quantify the concentrations of trace metals, polynuclear aromatic hydrocarbons, and chlorinated organic compounds. Correlation analyses were conducted to determine the relationships between measures of toxicity and concentrations of potentially toxic substances in the samples. Based upon the compilation of results from chemical analyses and toxicity tests, the quality of sediments in Sabine Lake and vicinity did not appear to be severely degraded. Chemical concentrations rarely exceeded effects-based numerical guidelines, suggesting that toxicant-induced effects would not be expected in most areas. None of the samples was highly toxic in acute amphipod survival tests and a minority (23%) of samples were highly toxic in sublethal urchin fertilization tests. Although toxic responses occurred frequently (94% of samples) in urchin embryo development tests performed with 100% pore waters, toxicity diminished markedly in tests done with diluted pore waters. Microbial bioluminescent activity was not reduced to a great degree (no EC50 <0.06 mg/ml) and cytochrome P-450 activity was not highly induced (6 samples exceeded 37.1 ug/g benzo[a]pyrene equivalents) in tests done with organic solvent extracts. Urchin embryological development was highly correlated with concentrations of ammonia and many trace metals. Cytochrome P450 induction was highly correlated with concentrations of a number of classes of organic compounds (including the polynuclear aromatic hydrocarbons and chlorinated compounds). (PDF contains 51 pages

    Filtering in nonlinear time delay systems

    Get PDF
    Linear and nonlinear (extended Kalman-Bucy) filters are derived for systems governed by coupled partial and integro-differential equations. The framework used is sufficiently general that filters for 1) lumped parameter systems having multiple time varying or constant time delays, 2) coupled lumped and hyperbolic distributed parameter systems, and 3) lumped parameter systems with functional time delays, evolve as special cases. Although the filtering equations are the final result, the corresponding smoothing equations are developed as well. The performance of the filter is illustrated through application to a well stirred chemical reactor with external heat exchange

    Detecting the Companions and Ellipsoidal Variations of RS CVn Primaries: II. omicron Draconis, a Candidate for Recent Low-Mass Companion Ingestion

    Get PDF
    To measure the stellar and orbital properties of the metal-poor RS CVn binary o Draconis (o Dra), we directly detect the companion using interferometric observations obtained with the Michigan InfraRed Combiner at Georgia State University's Center for High Angular Resolution Astronomy (CHARA) Array. The H-band flux ratio between the primary and secondary stars is the highest confirmed flux ratio (370 +/- 40) observed with long-baseline optical interferometry. These detections are combined with radial velocity data of both the primary and secondary stars, including new data obtained with the Tillinghast Reflector Echelle Spectrograph on the Tillinghast Reflector at the Fred Lawrence Whipple Observatory and the 2-m Tennessee State University Automated Spectroscopic Telescope at Fairborn Observatory. We determine an orbit from which we find model-independent masses and ages of the components (M_A = 1.35 +\- 0.05 M_Sun, M_B = 0.99 +\- 0.02 M_Sun, system age = 3.0 -\+ 0.5 Gyr). An average of a 23-year light curve of o Dra from the Tennessee State University Automated Photometric Telescope folded over the orbital period newly reveals eclipses and the quasi-sinusoidal signature of ellipsoidal variations. The modeled light curve for our system's stellar and orbital parameters confirm these ellipsoidal variations due to the primary star partially filling its Roche lobe potential, suggesting most of the photometric variations are not due to stellar activity (starspots). Measuring gravity darkening from the average light curve gives a best-fit of beta = 0.07 +\- 0.03, a value consistent with conventional theory for convective envelope stars. The primary star also exhibits an anomalously short rotation period, which, when taken with other system parameters, suggests the star likely engulfed a low-mass companion that had recently spun-up the star.Comment: 14 pages, 13 figures, Accepted to Ap

    Craters Hosting Radar-Bright Deposits in Mercury's North Polar Region: Areas of Persistent Shadow Determined from MESSENGER Images

    Get PDF
    Radar-bright features near Mercury's poles were discovered in Earth-based radar images and proposed to be water ice present in permanently shadowed areas. Images from MESSENGER's one-year primary orbital mission provide the first nearly complete view of Mercury’s north polar region, as well as multiple images of the surface under a range of illumination conditions. We find that radar-bright features near Mercury's north pole are associated with locations persistently shadowed in MESSENGER images. Within 10 degrees of the pole, almost all craters larger than 10 km in diameter host radar-bright deposits. There are several craters located near Mercury's north pole with sufficiently large diameters to enable long-lived water ice to be thermally stable at the surface within regions of permanent shadow. Craters located farther south also host radar-bright deposits and show a preference for cold-pole longitudes; thermal models suggest that a thin insulating layer is required to cover these deposits if the radar-bright material consists predominantly of longlived water ice. Many small (less than 10 km diameter) and low-latitude (extending southward to 66 degrees N) craters host radar-bright material, and water ice may not be thermally stable in these craters for ~1 Gy, even beneath an insulating layer. The correlation of radar-bright features with persistently shadowed areas is consistent with the deposits being composed of water ice, and future thermal modeling of small and low-latitude craters has the potential to further constrain the nature, source, and timing of emplacement of the radar-bright material

    Detecting the Companions and Ellipsoidal Variations of RS CVn Primaries: I. sigma Geminorum

    Get PDF
    To measure the properties of both components of the RS CVn binary sigma Geminorum (sigma Gem), we directly detect the faint companion, measure the orbit, obtain model-independent masses and evolutionary histories, detect ellipsoidal variations of the primary caused by the gravity of the companion, and measure gravity darkening. We detect the companion with interferometric observations obtained with the Michigan InfraRed Combiner (MIRC) at Georgia State University's Center for High Angular Resolution Astronomy (CHARA) Array with a primary-to-secondary H-band flux ratio of 270+/-70. A radial velocity curve of the companion was obtained with spectra from the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5-m Tillinghast Reflector at Fred Lawrence Whipple Observatory (FLWO). We additionally use new observations from the Tennessee State University Automated Spectroscopic and Photometric Telescopes (AST and APT, respectively). From our orbit, we determine model-independent masses of the components (M_1 = 1.28 +/- 0.07 M_Sun, M_2 = 0.73 +/- 0.03 M_Sun), and estimate a system age of 5 -/+ 1 Gyr. An average of the 27-year APT light curve of sigma Gem folded over the orbital period (P = 19.6027 +/- 0.0005 days) reveals a quasi-sinusoidal signature, which has previously been attributed to active longitudes 180 deg apart on the surface of sigma Gem. With the component masses, diameters, and orbit, we find that the predicted light curve for ellipsoidal variations due to the primary star partially filling its Roche lobe potential matches well with the observed average light curve, offering a compelling alternative explanation to the active longitudes hypothesis. Measuring gravity darkening from the light curve gives beta < 0.1, a value slightly lower than that expected from recent theory.Comment: Accepted to ApJ, 11 pages, 6 figures, 8 table

    Enhancement of Surfactants in Nanoparticles Produced by an Electrospray Aerosol Generator

    Get PDF
    Electrospray aerosol generators (EAGs) disperse conducting solutions into air, promptly neutralize the particles to remove the excess charge, and evaporate the residual solvent with a dry air flow. For solutions containing multiple solutes, the particles may become enhanced in the more surface-active solutes. The extent of the enhancement was estimated for nanoparticles electrosprayed from a solution containing NaCl and surfactant sodium dodecyl sulfate (SDS) mixed in a 9:1 weight ratio. A tandem particle mobility analyzer was used to quantify the hygroscopic growth factor (GF). The relative fractions of NaCl and SDS in the particles were estimated from the measured GFs assuming that NaCl and SDS take up water independently of each other. The nanoparticles were considerably enhanced in SDS relative to the starting solution, with the NaCl:SDS weight ratio increasing with the distance from the EAG electrified capillary tip to the neutralizer, and reaching ∼1:1 at the longest distances probed. The enhancement in SDS likely occurred during particle fission events as particles traveled from the capillary to the neutralizer. This study has practical ramifications for aerosol nanotechnology and aerosol-assisted drug delivery, which rely on EAG as an instrument of choice for nanoparticle generation

    EXPRES. II. Searching for Planets Around Active Stars: A Case Study of HD 101501

    Full text link
    By controlling instrumental errors to below 10 cm/s, the EXtreme PREcision Spectrograph (EXPRES) allows for a more insightful study of photospheric velocities that can mask weak Keplerian signals. Gaussian Processes (GP) have become a standard tool for modeling correlated noise in radial velocity datasets. While GPs are constrained and motivated by physical properties of the star, in some cases they are still flexible enough to absorb unresolved Keplerian signals. We apply GP regression to EXPRES radial velocity measurements of the 3.5 Gyr old chromospherically active Sun-like star, HD 101501. We obtain tight constraints on the stellar rotation period and the evolution of spot distributions using 28 seasons of ground-based photometry, as well as recent TESSTESS data. Light curve inversion was carried out on both photometry datasets to reveal the spot distribution and spot evolution timescales on the star. We find that the >5> 5 m/s rms radial velocity variations in HD 101501 are well-modeled with a GP stellar activity model without planets, yielding a residual rms scatter of 45 cm/s. We carry out simulations, injecting and recovering signals with the GP framework, to demonstrate that high-cadence observations are required to use GPs most efficiently to detect low-mass planets around active stars like HD 101501. Sparse sampling prevents GPs from learning the correlated noise structure and can allow it to absorb prospective Keplerian signals. We quantify the moderate to high-cadence monitoring that provides the necessary information to disentangle photospheric features using GPs and to detect planets around active stars.Comment: 25 pages, 16 figures, accepted to A

    Contemporaneous Imaging Comparisons of the Spotted Giant sigma Geminorum Using Interferometric, Spectroscopic, and Photometric Data

    Get PDF
    Nearby active stars with relatively rapid rotation and large starspot structures offer the opportunity to compare interferometric, spectroscopic, and photometric imaging techniques. In this paper, we image a spotted star with three different methods for the first time. The giant primary star of the RS Canum Venaticorum binary sigma. Geminorum (sigma Gem) was imaged for two epochs of interferometric, high-resolution spectroscopic, and photometric observations. The light curves from the reconstructions show good agreement with the observed light curves, supported by the longitudinally consistent spot features on the different maps. However, there is strong disagreement in the spot latitudes across the methods.Peer reviewe
    corecore