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Filtering in  Nonlinear Time Delay Systems 
THOlIdS  I<. YU, JOHS H. SEISFELD, AXD W .  HARMON RAY 

Abstract-Linear and nonlinear (extended Kalman-Bucy) filters 
are derived  for systems governed by coupled partial and integro- 
dierential equations. The framework used  is sufticiently general 
that  filters for 1) lumped parameter  systems having multiple time 
varying or constant time delays, 2)  coupled lumped and hyperbolic 
distributed  parameter  systems,  and 3)  lumped parameter  systems 
with  functional time delays, evolve as special  cases. Although the 
filtering  equations are  the final result,  the corresponding  smoothing 
equations are developed as  well. The performance of the filter is 
illustrated through application to a well stirred chemical reactor 
with external  heat exchange. 

R 
I. ISTRODUCTION 

ECESTLI-  there has been  interest in  filtering  for 
q-stcms described  by  partial differential equations, 

[I]-[17].  and for systems described  by  functional differ- 
ential  equations  such as those  containing  time  delays 
(e.g., [lS]-[22]). .At this  time  filters  for  linear  and non- 
linear  distributed  parameter  systems? linear systems  with 
constant  time  delays.  and  linear  systems xvith functional 
time  delays are availablc. Hmvever, filters hare not  hereto- 
fore been  dvailable  for  nonlinear  lumped parameter sys- 
tems  containing  time  delays,  either  linear or nonlinear 
lumped  parameter  sy?tems  having  time  varying  delays. or 
mixed lumped and  distributed  systems. In this  paper. 
n-ithin a single  framcn-ork n-e obtain ne\\- filters for the 
following classes of systems: 

1) nonlinear  lumped  parameter  systems  containing 
multiple  constant and timevarying  delays: 
2)  miscd  nonlinear  lumped and hyperbolic distributed 
parameter  systems;  and 
3) nonlinear systems  \\-ith  functional  time  dvlays. 

Several knoxn  [1S],[20]  and ne\\- l i r m r  filters cvolvc~ as 
special cases of the mor(’ general nonlinear results. l.ig. 1 
illustrates  the claxses of systems for which filters are 
derived in this  paper. 

As in the case of filtvring  in  finite  dimensional  (lumped 
parameter)  systems.  the key mathematical problem in 
deriving  filters for infinite  dimensional (distributed 
parameter)  systems is proper  definition of the noise 
processes. Comparatiwly  little wn-k has bccn published 
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Fig. 1 .  Classes of filten derived in this  paper. 

on  mathematically rigorous  approaches to  the  distributed 
parameter filt.cring problem,  e.g., see Falb  [?I,  Curtain  and 
Falb [‘33], Iiushner [SI, and  Bensoussan  [16],  the  latter 
\\-ork  being a rather comprehensive  treatment of filtering 
in  linear  distributed  parameter  system?. BIost of the re- 
ported work  on distributed  parameter  filtering (as in the 
case of lumped  parameter  filtering)  has been  based  on the 
formal  approach of representing  the dynarnical system  as a 
deterministic  partial  differential  equation forced  by a 
stochastic process with zero mean.  Linear  formulations of 
this  type hare  been  used  by  Tzafestas and Xghtingale, 
[5]-[i]. [13],  Thau [3]. Aleditch [9],  and Sakawa [14]. 
Sonlinear  filtcring  results  based on  purely  formal ap- 
proaches hare been prcwnted by  Tzafestas  and  Sight- 
ingale [i]. Lamont  and  Kumar [ I i ] ,  Seinfeld et al.  [ I l l ?  
and  Hn-ang ef al. [12]. 

Our  objective  in this  paper  is  to  derive  approximate 
nonlinear  filters  for a wide  class of time  delay  and  func- 
tional  differential  systems.  Because of the nonlinear 
character of the problem  and  the  unavailability of rigorous 
mathematical  results  applicable to  this problem, \\-e hare 
by  necessity,  adopted a purely  formal  approach.  Essen- 
tially. n-e recast the filtering  problem as a deterministic 
optimal  control  problem. which we solve b -  classical 
techniques to  obtain a two point  boundarJ-  value  problem 
(TPBYP). Decoupling of the TPBIT lead5 t o  the desired 
filtering  rquations.  Although  the  requisite  theory of sta- 
chastic differential equations in Hilbert space is not  avail- 
able for the class of problems we consider here.  the  validity 
of our  results  is, in  some sense. confirmed by the  fact  that 
the tu-o  previously  derived  linear  filters of Kv-akernaak 
[lS]  and T<oivo [lo] are special  cases of the nwre  general 
class of filters  derived  here (see Fig. 1).  In  summary.  then, 
we wish to  obtain  approximate  extended KaIn1an-Bucy 
filters  for the class of systems show1 in  Fig. 1. 

We begin b>- formulating the problem in a single  frame- 
work  general  enough to include the  types of systems de- 
picted in Fig. l as spc’cial cases. K c  then  present  the 
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derivat.ion of the  filter.  Finally, we illustrate  the comput,a- 
tional  a.pplication of the  fiker t.hrough est.imation of the 
t.empera.tures  in  a  chemical  reactor-heat  exchanger  system. 

11. FORUULATION OF THE PROBLEM 

Let.  us  consider the problem of filtering  for the class of 
systems  governed  by the coupled ordinary  and  partial 
funct,ional differentia,l equations 

*(t)  = f(z(t),z(rl,t),. . ' ,z(r,Jt>,t) 

+ J' K(z(r,O,r,O + E @ )  (1) 
0 

z,(r,t) = -1lf(r&)z&-,t) + g(z(r, t) ,r , t)  + {(r , t )  (2) 

defined for t 2 0 on  the normalized spat,ia.l domain 
T E [0,1]. z ( t )  and z(r, t)  are nl- and ?2-2-dimensional state 

' vectors,  respectively,  and f ( t )  and {(r , t )  are zero-mean 
random processes n-ith  arbitrary  statistical  properties. 
zt  and z, denote dz /d t  and az/dr, respect.ively.  Observations 
of t,he  system  consist of the ns-dimensional  vector y ( t ) ,  
related  to  the  st.ates  by 

y( t )  = h(z(t),Z(rl*:t),. . .,2(r7*:t),t) 

+ l1 H(z(r , t ) ,r , t )  dr  + ?( t )  (3) 

where ~ ( t )  is  a zero-mean measurement  error  with  arbit,rary 
sta.t.ist.ica1 properties  and 0 < rl < . . . < rB 5 1 and 0 < 

in  general of the  lumped  parameter  state r ( f )  and  the 
dist.ribut,ed  parameter  state z(r,t) at  y measurement. 
locations  and  integrated  over  the  spatial  domain of the 
syst.em.  Initial  conditions  for (1) and ( 2 )  are 

rl* < . . . < rY* 5 1. Thus,  the  observations can consist 

z(0) = 20 (4) 

z(r,O) = zo(r). (5) 

The boundary condit,ion at r = 0 for ( 2 )  is 

z(0, t )  = b(z(tj) .  (6) 

We shall now show that by  appropriate modification 
of t.he system (1)-(6), four  important classes of time de1a.y 
and mixed  lumped  and  distributed prameter  systems 
result. 

Nonlinear  Systerns xitlt Multiple Constant   Time  Delays  

The system (1)-(6) can  be  reduced  to the following  non- 
linear  lumped  parameter  system  containing  multiple 
constant  time  delays: 

2 = f ( Z ( t ) , Z ( t  - a ) ,  . . .,z(t - cy#&) + E(t) (7)  

y ( t )  = h ( X ( f ) , Z ( f  - I%*),. . .,z(t - a7*),f) + q( t )  (8)  

z(t)  = q5(t): - a m a x  5 t 5 0 
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where 0 < 01' < . . . < CY, and 0 < a1* < . . . < a7*. 
This  can  be  done by set.ting K = H = y = { = 0,  b(z(t)) = 
s ( t ) ,  (and  hence, 712 = ??I), dI(r,t) = amax-l, T ;  = a r / a m a x !  

rj* = aj*//amax, and z(r,O) = +(-,ran,as). Then, z(ri , t)  = 

z(t - ai)  and z(r j* , t )  = z(t - aj*). In  the formulation 
(7)-(9) there  are 0 constant.  time  delays in the  state equa- 
tion  and y constant  time  delays in the  observation  equa- 
t,ion.  These  delays  need  not  be  equal. 

LVonlir~ear Systems .with  Multiple  Time-Va.ryi)ly  Dela.ys 

The  system (1)-(6) can  be  reduced  to the following  non- 
linear  lumped  parameter  system  containing  multiple  time- 
varying  delays : 

2 = f ( z ( t ) l z ( t  - a1(t)),. . . , x ( t  - a,( f ) ) , t )  + t(t) (10) 

y(t) = h.(z(t),z(t - Crl*(f)),. . .,X(t - ..,*(t)),f) + q( t )  (11) 

&(t)  < 1, i = 1 , 2 ; - . , p  (12) 

bj*(f) < 1, , j  = 1,2,. . -,w (13) 

~ ( t )  = + ( f ) ,  - a m a s  I t 5 0 (14) 

amar = max(al(0); . -,~,(O),~1*(0); . *,a,*(O)). (1s) 
To  do so u-e set K = H = y = { = 0, 0 = y = 1, ?'I = 
rl* = 1, b(r ( t ) )  = [z'(t),x'(t)?-. .,s'(f)]', an n 2  .= ( p  + 
w)nl  - dimensional  vector  consisting of p + w identical 
vect.or elements z ( t ) ,  J I ( r , t )  = [iWij(l.,f) J an 712 X 712 

matrix  with 711 x ,wl matrix  components d l ; ,  defined by 

[ 0, i # j  

Also we let. the nrdimensional  vector z(r , t )  = [zlT(r, t) ,  . . , 
zpT(r,t),zl*T(r,t), - . .?z,*'(r,t)IT n-here  each z i ( r , t )  or zj*(r,t) 
is an nrdimensional vector,  and  set zi(r,O) = +(-rai(0)) ,  
zj*(r,O) = +(-ra1*(O)). Then  zi(l,t) = z ( t  - ai(t)) and 
zj*(l,t) = s(t - a j * ( t ) ) .  Conditions (12) and (13) insure 
that  the  time delaJ-s do  not  increase  faster  than  time  itself. 

M i x e d  Non1inea.r Lumped and Hyperbolic  Distributed 
Parameter  Systems 

Set.ting K = H = 0, 6 = 1? and r1 = 1? we obtain  the 
mixed  lumped  and hyperbolic distributed  system 

2( f )  = f ( z ( t ) , z ( l , f ) , t )  + ( ( t )  ( l a  

zl(r,t) = -X(r ! t ) z , t r , t )  + y(z(r!t) ,r , t)  + {(r , t )  (18) 

y ( t )  = h(z( f ) , z ( r l* , f ) , .  . .,z(r,*,t),t) + q(t)  (19) 

subject. to (4)-(6). Thus, (17)-(19) represents processes in 
\T-hich transportation  lags  are accompanied by  phenomena 
such  as  dissipation of mass  and  energy, fluid mixing, and 
chemical  reactions. In  such cases. differential-difference 
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equations  arc  inadequate  in  describing  the  system.  The 
importance of this class of systems  has  been  prrvioudy 
discussed by Hiratsuka  and  Ichilan-a r24] and Aggarlwl 
[%I.  
Nonlinear Systems zrith F1mti0na.l  Time Delays 

The  system (1)-(6) can  be  reduccd to  the following 
nonlinear  lumped parametw  system  containing  functional 
time  delap: 

2(1) = f(z(t) ,z(t  - a1); . . . t ( t  - a3).t) 

+ r' Ko(r(t - a).a:f) cla + ( ( t )  (20) 

y(t) = h ( X ( t ) J ( t  - a1*),- . .,z(t - as*).t) 

~ ( t )  = +(t)* - a'max 5 t 2 O 
amna = max (ag.a,*) (23) 

where 0 < cyI < . . . < a3 and 0 < al* < . . . < a;-*. This 
can  be  done  by  setting g = < = 0. b ( s ( t ) )  = x(!). (and 
henct. n 2  = ~ 1 ~ ) .  X ( r . t )  = alllaX-l, r i  = a, :a,,,,:,. I-,* = 

amax r , t ) ,  H(t ( r , t ) , r .S )  = a,,,,:, H o ( ~ ( r . t ) .  a,llss r . t )> and 
z(r?O) = +(- J . ~ , , ! ~ J .  Then z(r , . t )  = .r(t - ai). z(rl*.f)  = 

r(t - a?*)? and z ( r , t )  = s ( t  - a) .  

CY] : anlax- 1' = 
* :  CY.;a,,,nx, K(z(r.t).r.t) = a,,?ax Ko(z(r.t). 

111. DERIVATIOS OF THE FILTER 
The  derivation of the filter  for the  system of (1)-(6) 

consists of tv-o  parts.  First, we formulate  the problem of 
fixed timc  smoothing  and  present the necessary  condition 
for optimalit!- in t h r  form of a tno-point boundar!- value 
problem.  Sccond. lye convert the smoothing  problcm  into 
the filtering  problem  using a formulation  based  on diffrr- 
entia1  sensitivities [26]. The  techniqur  has  several  desir- 
able  features: 1) no a. priori  assumptions  rrgarding  the 
form of thc filter arc  required; 2 )  thc exact intcrpretation 
of the so-called covariance  matrices rrwlts:  and 3) an 
indication of th r  form of thc exact filter  rrsults.  Xlthough 
the derivation of the  approximate nonlinear  filter could 
have  been  carried  out by invariant  imbrdding  (for es- 
ample. w e  Hn.ang et al. [I?]) .  the present  technique is less 
cumbersome. In this section IW shall prcwnt t h c  drtailcd 
derivation for thcl c aw of  K = H = 0 in (1)-(6). IVc do 
this only  for the conveniencr ( I f  the readcr so as to  avoid 
details which are more  tedious than need bc  girrn. Re- 
cawc thc  form of the filter for thc case of nonzcrn kcrnclr. 
K and H .  can bc  obtained so readily  from that for 6 = 

H = 0, \ve merely  present the filter i n  Section IT. 

Statenmt of fhe Problm 

Conaider the  systcm (1)-(6)  \\\-ith K = H = 0. Thc 
state  estimation problem i?: Given anp fiscd T > 0 and 
obsrrvations g( t ) -  0 5 t 5 T ?  it  is  desired to  estimate r(t) 
and z (r . t )  for 0 5 t 5 T. 0 5 r 5 1. This is the smoothing 
problem. The  ratimation  criterion shall be to nlinimize 

- g(z(r! t )>r, t ) .  Rl(r,s*t)(.zt(s,f) + Lu(s,t)z,(s!t) 

- g(z(s. t ) .s. t ) )  } drds dt } (23) 

l1 R1+(r,p,t) R l (P .S , t )  d p  = 16(r - s) (24) 

where the  matrices Ro(t) and Q ( t )  are  symmetric positive- 
definite. 

Rl(rJs , f )  is defined by 

where Rl+(r,s , t )  is  a  positivedefinite.  symmetric  matrix: 
Rl+(r.s.t) = (Rl+(sJr.t))T. 6( . )  is  the Dirac  delta  function 
and I is the  identity  matrix.  Although  the  wighting 
matrices Ro(t) and Q ( t )  and  matrix R1+(r.s,t) are only re- 
stricted to be  symmetric poeitive-definite, and  satisfy ( N ) ,  
they can be chosen to reflect the statistical  proprties of 
the  stochwtic  variables ( ( f ) , { ( r > f ) .  and q ( t )  if statistical 
information  about  these  crrors  is  knou-n. 

We first  reformulate  this problem as an  optimal  control 
problem,  i.e.. it  is  desirrd to minimize 

P T  

subject to the  constraints 

* ( t )  = . f(r(t).?(rl.t)*. . . . z ( rp f ) . t )  + u(t) (26) 
zt (r . t )  = -M(r. t )zT(r . t )  + g(z(r . t ) . r . t )  + c(r , f )  (27)  

z(0. t )  = b ( s ( t ) ) .  (") 

Thr  necessary  conditions  for  optimality  corresponding 
to (25)-(%) are rendilJ- derivcd  through  adjoining (26)- 
(2s) to thr  objectiv(x (25) by Lagrange  multiplicrs X( t )  and 
a(r,t) and  thrn  taking  first  variations. Only the  rcsults  are 
prcs:cmtcd hcre. nhc rc  u e  u s r  th r  carat t o  indicate  the 
optimal  ralucs. and the  notation (. :T )  in the  arguments 
to  denote  thc de1:cndence of thc optimal  solution  on the 
observation intrrval [0.T].  The  optimal values of f ( t / T )  
and i(r.f 7' )  result  from the solution of t h r  follon.ing two- 
point  boundary c a l w  problem [ Z ]  : 

.Tt(f!T) = j - + R 0 - y t ) ~ ( t , ~ T )  (29) 

gt(r.t!7') = -X& + tj - 3 R1-(r,s,t)6(s,t,:T) ds (30) 

i , ( t IT )  = 2X,'Q(t)(y - h)  - f lTI ( t :T)  
s,' 
- 61TdP(O!t)B(0.t/T) (31) 
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- h'S(r,t/T) - (LJfT(rA+(r,t/T))r (32) These  equations describe the t.ime  evolution of the opt.ima1 

i (O/T)  = X(T/T) = 0 (33) solutions, 2 and i, as t.he  length of the observation  interva.1 
T varies. 

&(r,O/T) = 6(r,T/T) = 0 (34) 

i(O,t/T) = b(S(t/T)) (35) 

B(l,t/T) = 0 (36) 

where f denotes f(S(t/T),i(rl,t/T),- . ,i(r@,t/T),t), etc. 
Equat.ions (29)-(36) represent the boundary  value  problem 
which must be  solved to produce the optimal  least  square 
srnoofhed estimates of z(t) and z(r,t) m-hen data  are given 
over 0 5 t 5 T .  The opt,imal  smoothing  results for  each 
of the special  cases  discussed  in  Sect,ion I1 can  be  deter- 
mined  from the  appropriate simplification of t,hese  equa- 
tions. 

Now let q(t/T) be  what.ever we desire to  estimate  in  the 
system, based  on  observations y ( ~ ) ,  7 E [O,T], and  denote 
the optimal  estimate of q(t/T) by @(t/T) .  S' lnce we are 
interested in t,he  optimal  filter  estimate,  n-e  seek @(TIT) ,  
a.nd, in particular,  the  total  derivative da(T/T)/dT. We 
note  that 

which we mit,e for convenience as 

-- d Q ( T / T )  - @,(T /T)  + @,(T/T). 
dT 

Diferential Sensifizdies Thus,  t.he  total  derivative of the  quantity & ( T / T )  is  a sum 
of two  terms, one  representing the dynamics of the  system, 

In  the above  two-point  boundary value  problem we can @r(t/T)lt,T, and  the second the  updating of the  estimate 
express the solutions ?( t /T)  and i(r,t/T) in  t,erms of the in t,he  face of new observations, @T(t/T)It=T. This  result 
Lagrange  mult.ipliers  by  was demonstrated for  lumped  parameter  systems by - -  

Z(t/T) = z[K(t/T),B(s,t/T)] 
Padmanabhan [as]. 

(37) When 6 is also  a function of one  or  more spatial  variables, 
i(r,t/T) = z[r,x(t/T),8(s,t/T)], s E [0,1]. (38) @(r,s,t/T), then (46) becomes 

Let 6/68 denote  the  functional  derivat,ive  and define the a@b,s,T/T) 
first-order  differential  sensitivity  matrices P"", P ,  Pa, and aT = @t(r,S,t/T)It=T + bT(r,s,t/T)lt=T (47) 
Pzz by 

which we m i t e  for  convenience as 

(39) 

6P(t/T) 
P"'(s,t/T) = -2 

S&(s,t/T) (40) We emphasize that. each  t.erm in (47), and hence (48), 
represents  a digerent part,ial  derivative. In part,icular,  t.he 

ai(r,t/T) 1eftrha.nd  side (LHS) of (47) and (47) is the analog to  the 

(RHS) of (47) and (48) consists of partial  derivatives  with 

P"(r,t/T) = - 2  ~ 

W / T )  (41) total  derivative  in (46), whereas the right-hand  side 

Si(r,t/T) 
68(s,t/T)' respectively. 

P"(T,s,~/T) = -2 ~ (42) respect t.0 each of the  arguments t and T in ( . , t /T) ,  

Then, using the chain  rule of calculus,  t.he  part.ia1 
derivat,ives of 3, i, a.nd ir with  respect to T can be ex- 
pressed as We now wish t.0 derive the dynamical  equations  for 

df(T/T)/clT and ai(r,T/T)/aT which represent  the  rate 
of change of t.he Jiltered estimates  with T .  Using (46) and 
(48), these  can  be expressed as 

State  Filter Equations 

d5(T/T) 
dT 

-- - Zt(T/T)  + Z,(T/T) (49) 

+ pzr(r7t /T)xT(t /T)}  (44) Equations (33) and (34) imply that 
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c&(T/T) ad.(r,T/T) ~- - 
el T 

Using (46) and (4S), (51) can  be  written 

= 0. 
aT 

(51) 

iT(T/T) + Az(T/T) = 0 (52) 

d..T(T,T/T) + 6t(r,T/T) = 0. (53) 

X,(T/T) = -2i.,TQ(T)(y - h) (54) 

Then (31)-(34) and (32)-(53) give 

d,(s,T/T) = -2CAT,(,,,TIT~Q(T)(y - h)6(s - rz*). (55) 
i = l  

Subst.ituting (54) and (55)  into (43) and (44): we obtain 

FT(T!T) = Prr(T/T)hLTQ(T)(y - h)  
5 + Prz(~,*,T/T)hTz(,*.~.~)&(T)(~ - A) (56) 

i = 1  

I 

iT(r ,T/T)  = P"(~r,ri*,T/T)i)_T,(r,*,~j~~Q(T)(y - A) 
i = l  

+ P"(T,T/T)frTQ(T)(y - i.). (57) 

On  t.he  other  hand, (29), (30),  (33),  and (34) give 

.?,(T/T) = f (55) 

i , (r ,T/T) = --MiT + ?j. (59) 

Hence! (49). ( j O ) ,  and (56)-(59) constitute  the  state  filter 
equations.  The  boundary  condition for i(O,T/T) is 

i(O,T/T) = b(.?(T/T)). (60) 

Covariance Equa.tions 

We now need to  derive  the  dynamic  equations for the 
differential  sensitivities, Prr(T/T),  P"(s,T/T), P ( r ,  
T / T ) ,  and P"(r,s,T/T), to complete the specification of 
the filter.  These  rquations  are usually  referred to as the 
covariance  equations  by  analogy  to the linear case! 
although  they are not the  true covariances in the non- 
linear case. In  order  to derive  these  equations, 11-e need 
the  total  derivatives  with  respect  to T of the four differ- 
ential  yensitivities a? in (49) and (50) for thc  state  filter 
equations. 4 s  we know,  each dP(.  ,T/T)!dT will be a 
sum of tu-o terms, P,( . ,T /T)  and P,(..TIT). For the 
general  nonlinear case we are considering,  it  can be shown 
that P,(. , T / T )  involves the second-order  differential 
sensitivities,  and. liken-ise, the second-order  diffrrential 
sensitivities involve the f h i d o r d e r  differential  scnyitivities 
etc. Thw;  in general?  it  is  not posyiblc t o  closc the Pyytem of 
equations. For thip reason, u-e will approximate dP(. ,  
T/T):'dT by P,(. .T!T),  enabling  us to obtain a cloyed set 
of equations. 

The basic approach is that n-e shall  derive  two expres- 
sions for each of the  quantities, 

and  equate  the  two  esprewions for each of the  quantities 
while setting t = T .  Since  each of the  quantities above is  a 
continuous  function of t and T ?  n-e  can  \\-rite 

a a 
- [.?T(t/T)] = - [5,(t /T)] at aT 

Substituting (29) in the  RHS of (62) gives 

(65) 

On the  other  hand, using (43) we can nritc 

at 
d [TT( f ;T ) ]  = -3 

1 
-+[  at P"(t/T) - [i ,( t /T) I a 

+ PrZ(s,f /T) - [d . .T(~ , t /T)]  C I S ]  (66) 
1 a 

at 
which  gives  us tn-o expressions for the first quantity  in 

To obtain  tn-o  relations  for  the second quantity in (61) 
(61). 

we first  substitute (30) in the  RHS of (63). giving 

a 
~ [iT(r. f /T)] -:JfP,, + ~z~r, t . .Tj i~(r , f : 'T)  at 

- + l1 Rl'(r.s.f)BT(s,f.T) ds (67) 

lj-hich, with  the  help of (44) and (4.5). can  be  written as 

a 
at 
- [iT(r.fBT)] = -3 [-J~( , . ! f )P,"(r , t /T)  

+ g:P~'(r,f-:'T)]X,(t.:'T) 

- 3 [11 -~I(r,f)P,ZZ(r.s,f:'T) 

+ ~z(r.t;T)PZZ(r,S!f!T) 
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Now we equate (65) and (66) set,t.ing t = T .  For  the 
equality  to hold the coefficients of iT(t/T),   B,(s, f /T),  a.nd 
BT(O,t/T) must,  be zero at. t = T .  Doing so, we obtain 
[where i t  should  be  noted  t,hat  some  lengt.hy  algebraic 
manipulations  are  required  to  evaluate  t,he  last,  two  terms 
of (66)l  

P,'"(T/T) = f,P""(T/T) + P""(T/T)fzT 
8 + c ~z(ri ,T/T)PZ=:(~i ,T/T)  

i = l  

+ 2 P="(T/T)Vzi(T/T)PL2(r,*,T/T) 
+ 2 Pz~(ri*,T/T)T~i"(T/T)P""(T/T) 

i = l  

i =  1 

+ 5 2 P " ~ ( ~ ~ * , T / T ) v ~ ~ ( T / T ) P ~ ~  
i s 1  j = 1  

. (r?*,T/T) + R,-'(T) ('70) 

P,"(s,T/T) = f x P z Z ( ~ , T / T )  + P"(s,T/T)~~,(,.T/T, 

- P s z " ( ~ , T / T ) M T ( ~ , T )  
B + fz(r,,T/~PZZ(Pi,S:T/T) 

i = l  

+ P""(T/T)VrX(T/T)PzB(s,T/T) 
+ 2 P""(T/T)T~'*i(T/T)P"(~i*,~,T/T) 
+ 2 ~Z(ri*,T/T)V;i"(T/T)P"z(s,T/T) 

i= 1 

i=l  

+ 5 2 pZZ(ri*,T/T)Vij(T/T)Pi; 
i = l j = 1  

( T j * , S , T / T )  ('71) 

Pzz(O,T/T) = P1z(T/T)6,T. (72) 

Similarly: equating (6s) a.nd (69) we obtain  (again not,- 
ing  that.  the  evaluation of tho  last two t.crms of (69)  
requires some  algebmic  labor) 

+ P"(T,s ,T /T)~~Z(~.T/T)  
- M(r,T)P,"'(.r,s,T/T) 
- PsZE(r,s,T/T)MT(s,T) 
+ P""(r,T/T)VXZ(T/T)PZ2(s,T/T) 
+ 2 Pzz(r,T/T)I'"i(T/T)Pzz((r~*,s,T/T) 

i= 1 

+ 2 Pzz(r,r~*,T/T)T~i"(T/T)Pz2(s,T/T) 
i =  1 

and  then  equating  the coef6cient.s of i,(t/T) and BT(s,t/T) 
t.0 zero at. t = T.  The  result  is 
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P"(O,T/T) = S,P'"(T/T) (SI) TABLE I 
FILT1:R FOR T H E  SYRTKXI OF ( l t ( 6 )  IYITH = H = 0 

PZ'(O,S,T/T) = @"(s?T/T). (S2) 
Conditions Boundary 

Initial 

The  entire  filter is summarizcd  in  Table I. In   the column Equations  (arbitrary) Conditions 
of init.ia1 conditions, .?(O/O) and i(r,O!O) represent  our 
best  initial guesses of so and zo ( r ) .  T h r  initial  conditions 
Pzr(O/O), PrL(s,O/O), P"(r,O::'O) and P-z(r,s,O/O) are 
basically arbitrary. In the  linear, n-hite  noise  case it can  be 
shown that 

P'"(T/T) = E [ ( s ( T )  - ? ( T / T ) ) ( z ( T )  - P(T/T))T]  
(83) 

PZz(r?T/T) = E[(:r(T) - f ( T / T ) ) ( z ( r , T )  

- i (r ,T, /T))T] (S4) 

P'(r,T:iT) = E [ ( z ( r ! T )  - d(r .T /T ) ) ( r (T )  - .?(T::'T))T] 
( S 5 )  

Pyr,s.T;T) = E[(z(r ,T)  - i(I.!T/T))(Z(S,T) 

- ~ ( s , T / T ) ) ~ ] .  (S6) 

These  relations  may  be  used as a guide  in  choosing 
P"(O/O), . . . ,PzyT?s,o/o). 

Discussion of the Filter 

The exact equations for t h r  four  covariance  matrices 
are of the form 

where P can  denote PIr? Pxz, P", or Pzz. 
R e  noted  rarlier  that we would neglect the second terms 

on the RHS of these  equations. L r t  UP give some indication 
as to  how these neglected terms  might  be  calculated. 
Employing the chain  rule, we have for PTTZ(r? f /T) ,  
for  example, I 

constitutes  the  approximation  inherent in the nonlinear 
filter. Inclusion of higher ordrr differential  sensitivities 
increases the complcxity of the filter, the implcmcntation 
of which \vould be considcrably  more difficult computa- 
tionally. A s  with all approximate  nonlinrar  filters,  their 
validit:- can  only  be  awessed  through  computcr  simula- 
tion. 

IV. FILTERISG IS SOSLISEAR STSTEMS DESCRIBED RT 
FUNCTIOXAL DIFFERENTIAL EQ~ATIOIW 

The method of derivation of Srction I11 can be used  in 
the case when K and H are nonzero in (1) and ( 3 ) .  By 
replacing 11 by h + JA H dr and f by j + JA Kdr in !ij in 
(23). the filter  equations  for  s>-stem  modrl (1)-(3) can 
readily be obtained.  The  filter in this  case is summarized 
below. The  state filter i p  

The t,errns 

aP"'(r,f/T) GP"'(?-,t/T) 
a l ( t /T )  Gd(v,f/T) 

are 121 X n2 X 111 and ?jl x T I ?  X T I ?  matrices, rcspectiuc1;v. 
which are thc second-ordcr  differential sensitivities.  Thus, 
the neglected  tcrmr;  in (S7) involve  sccond-order differ- 
ential  sensitivities.  u-hich?  in turn, depend on third-order 
differential  sensitivities,  etc. As n-ith other nonlinear 
stochastic  problems in mathematics,  the cxact  solution of 
the  nonlinear  filtering  problem is unavailable  due to a 
closure  problem. In  the linear.  n-hitc  noise case it  can be 
shoxvn tha.t thc second and  higher  ordcr differential  scnsi- 
tivitics are identically zero. I t  is the ncglect of the second 
t,erm on the RHS of the  equations of thc  type (Si) t,hat 
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TABLE I1 
FILTER FOR THE SYSTICM (1)-(6) WITH K # 0, H # 0 

Initial 
Conditions Boundary 

Equations (arbit.rary)  Conditions 

Estimat.es 
? ( T / T )  
?(T ,T/T)  

First Order  Differential 
Sensitivities 

P z z ( T / T )  
Pzz(s,T/T) 
PZr(r ,T/T)  
P*z(r,s,T/T) 

None 
(91 ) 

P l  P l  

+ J’P”’(. ,*,T/T)v~~’(r,T/T)PZX(T, . ,T /T )  d l  (97) 
0 

where p = x or z and X = z or z. The unspecified left. 
argument of each term  is if p = z and  does  not  exist if 
u = x. The unsprcified right  argument of each  term  is s 
if X = z and does not  exist if x = a. 

In this  case  the V matrices  are defined as follows (the 
dependence  on T is  suppressed for convenience): 

p x  = [AzTQ4 Iz VJIf = [A.,TQ6],(,*) 

vz2(e) = -ArTQBz(e)(e) v i r  = [RT,,,*)~4],z 

i 
Fig. 2. Well-stirred chemical reactor with external heat exchanger. 

Tr. ESTIMATION O F  TEMPERATURE I N  A RECYCLE R.EACTOR 

-4n important problem in  the process industries  is  the 
est.imat.ion of the  t,rmpera.ture  distribution  in a chemical 
reactor. A rather common configurat,ion for the execution 
of highly  exothermic  reactions  is  a  system consist.ing of a 
well-stirred  chemical  rractor a portion of the  output  from 
which is recycled through  a  heat  exchanger  back  to  the 
reactor.  By  such  a  design,  t.hc  temperat.ure of the n-ell- 
stirred  reactor,  in which the  reaction  is  prinlarily  carried 
out,  is cont,rolled by recycling  a fixed fraction of the 
effluent t.hrough the  hmt. exchanger.  Such  a system is 
shown  in  Fig. 2. 

Let  us consider the problem of es t imahg  the t,empera- 
t.ures, z(t) and z(r , t ) ,  in  t.he well-st.irred react.or  and  heat 
exchanger,  respectivelg,  based  on  corruptrd  measurement 
of t.he  reactor  t.emperature z(t)  and  the  temperature  at  the 
midpoint of the heat.  exchanger, z(O.S,t). We  consider the 
case in which the chemical reaction  is zero order, that  is 
the  ra.te of reaction  is  independent of the  concentration of 
reactant..  Under  such condit,ions, \\-e need not, include 
diff erent,ial  equations for species concentration, only the 
trvo temperatures, z(t) and z (r , t ) .  If r(t) and z(r , t )  are 
made dimensionless, the  dynamic  behavior of the  system 
is  governed  by 

*(t)  = -0.052 + 0.2z(l,t) - 0.001 [ exp ( - ) - 11 
1 + 2  

z , ( ~ , t )  = -z,(r,t) + 0.1 - 0.001 exp ~ 

( 1 2 3  

where the  parameters  have been  chosen to be  typical of 
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Fig. 3. Comparison of actual and  estimated  temperatures in 
react.or, at midpoint. and exit of heat exchanger, x ( t ) ,  z(0.5,t), z(l,t), 

respectively. 

those  that might  be  encountered in practice.  The non- 
linearity of the  system  arises from the exponential  de- 
pendence of the  rate of a chemical reaction  on  temprrature. 
Xote  that  the chemical reaction  proceeds  not  only in t h r  
well-stirred  reactor  but  also  in the  heat  exchanger,  as 
indicated  by  the  exponential  terms  in  both statr  equation?. 
The observations  are given  by 

on the basis of which vir desire to  estimatr z(t)  and z(r. t) .  
In  chemical reactor  problems of this  typr  it  i?  often 
acceptable  to neglect. dynamical  noise [2S]. The observa- 
tion  errors 111 and q2 arise  because of turbulrnt  rddirs 
passing the  temperature  probes. 

For  the  purpose of numerical  simulation v-r assumr 
that  the  true,  but unknown,  initial states  arr r(0) = 
z ( r .0 )  = -0.1. The  observation  errors  n-ere  genrratcd by 
v i ( t )  = 0.3G(0.1), i = 1,2, where G‘(0,l) is a normally 
distributed  random  variablr  with zero  mean and  unit 
standard  deviation produced by a  random  numbrr  grner- 
ator. We assume  that  the level and  cha.ractrr of this noise 
is  unlmou-n.  Sumerical  experiments \wrr conductrd  with 
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the following parameter  values: f(0) = i ( r : O )  = 0.25, 
Pzz(0) = 2.0, Pzz(s,O) = 2.0, Pzz(r,s,O) = 2.0, and Q = 
1.0. Note  that because we do  not h a w  any a priori in- 
formation  on  the init.ia1 states or the  noisr,  thew  param- 
eters  are  arbitrary.  Kumerical  inlplen~entation of the  state 
and  filter  equations  was  carried  out using a  standard  finite 
difference scheme and  required  about 40 seconds  on an 
I B N  370j15.5 for an  rxperimental  time of f = 40. 

The filter  performance  is  shown  in I;ig. 3, where thr   t rue 
states, z(f), z(O.S,f) ,  z ( l , t ) ,  and  their  estimates f ( t ) ,  
i(0.5,t), and i (1, t )  arc  compared.  Experimrnts  with 
different, initial  gursses  and  valurs of Q confirmed the 
robustness of the filter for th r  relativcly significant 
measurement  noise  considered  here. Thew  results point to 
advantages in the use of a  filter  in  a  feedback  control 
system  for chemical reactors of the  type considered  here. 

VI. COKCLUSIONS 
In  t,his  paper we have  derived  approsimatr  smoothing 

and  filtering  equations  for  a  general class o f  nonlinear 
functional  differential  equations, (1)-(6). From  these 
results we have  obtained  filters for the following classes of 
systems: 

1) nonlinear  lumped parameter  systems  with  multiple 
constant.  and  time-varying  delays; 
2 )  nonlinear  systems of coupled ordinary  and  hyper- 
bolic partial  differential  rquations;  and 
3) nonlinear  systems  having  functional  time  delays. 

With  the exception of the linear  filtcr? of I<\\-akernaak 
[15] and Koivo 1201, n-hich are encompassed  within our 
general  results? thr  filters  drvdopcd  hrrrin  arc  nrw. 
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