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Filtering in Nonlinear Time Delay Systems

THOMAS K. YU, JOHN H. SEINFELD, axo W. HARMON RAY

Abstract—Linear and nonlinear (extended Kalman-Bucy) filters
are derived for systems governed by coupled partial and integro-
differential equations. The framework used is sufficiently general
that filters for 1) lumped parameter systems having multiple time
varying or constant time delays, 2) coupled lumped and hyperbolic
distributed parameter systems, and 3) lumped parameter systems
with functional time delays, evolve as special cases. Although the
filtering equations are the final result, the corresponding smoothing
equations are developed as well. The performance of the filter is
illustrated through application to a well stirred chemical reactor
with external heat exchange.

I. INTRODUCTION

ECENTLY there has been interest in filtering for
systems desceribed by partial differential equations,
[11-[17], and for systems described by functional differ-
ential equations such as those containing time delays
(e.g., [18]-[22]). At this time filters for linear and non-
linear distributed parameter systems, linear systems with
constant time delays, and linear systems with functional
time delays are available. However, filters have not hereto-
fore been dvailable for nonlincar lumped parameter sys-
tems containing time delays, either linear or nonlinear
lumped parameter svstems having time varving delays, or
mixed lumped and distributed systems. In this paper,
within a single framework we obtain new filters for the
following classes of systems:

1) nonlinear lumped parameter systems containing
multiple constant and time-varving delays;

2) mixed nonlinear lumped and hyperbolie distributed
parameter systems; and

3) nonlinear systems with funetional time delayvs.

Several known [18].[20] and new {inear filters evolve as
special eases of the more general nonlinear results. Fig. 1
illustrates the classes of systems for which filters are
derived in this paper.

As in the case of filtering in finite dimensional (lumped
parameter) svstems. the key mathematical problem in
deriving filters for infinite dimensional (distributed
parameter) svstems is proper definition of the noise
processes. Comparatively little work has been published
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on mathematically rigorous approaches to the distributed
parameter filtering problem, e.g., see Falb [2], Curtain and
Falb [23], Kushner [8], and Bensoussan [16], the latter
work being a rather comprehensive treatment of filtering
in linear distributed parameter svstems. Most of the re-
ported work on distributed parameter filtering (as in the
case of lumped parameter filtering) has been based on the
formal approach of representing the dynamical system asa
deterministic partial differential equation forced by a
stochastie process with zero mean. Linear formulations of
this type have been used by Tzafestas and Nightingale,
[5]-17]. [13], Thau (3], Mediteh [9], and Sakawa [14].
Nonlinear filtering results based on purely formal ap-
proaches have been presented by Tzafestas and Night-
ingale [7]. Lamont and Kumar [17], Seinfeld et al. [11],
and Hwang ef al. [12].

Our objective in this paper is to derive approximate
nonlinear filters for a wide class of time delay and fune-
tional differential svstems. Because of the nonlinear
character of the problem and the unavailability of rigorous
mathematical results applicable to this problem, we have
by necessity, adopted a purely formal approach. Essen-
tially. we recast the filtering problem as a deterministie
optimal control problem, which we =olve by classieal
techniques to obtain a two point boundary value problem
(TPBVP). Decoupling of the TPBVP leads to the desired
filtering equations. Although the requisite theory of sto-
chastic differential equations in Hilbert space is not avail-
able for the class of problems we consider here. the validity
of our results iz, in some sense, eonfirmed by the faet that
the two previously derived linear filters of Kwakernaak
[18] and Koivo [20] are special cases of the more general
class of filters derived here (see Fig. 1). In summary, then,
we wish to obtain approximate extended Walman—-Buey
filters for the elass of svstems shown in Fig. 1.

We begin by formulating the problem in a single frame-
work general enough to include the types of systems de-
picted in Fig. 1 as special cases. We then present the
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derivation of the filter. Finally, we illustrate the computa-
tional application of the filter through estimation of the
temperatures in 8 chemical reactor-heat exchanger system.

II. FORMULATION OF THE PROBLEM

Let us consider the problem of filtering for the class of
systems governed by the coupled ordinary and partial
functional differential equations

x(t) = f(il)(t),z(’l‘l,t), ctt 72(7‘6;0:1)
[ Ketar a0
0

art) = =M@ z(t) + gt + () (2)

defined for ¢ > 0 on the normalized spatial domain
r € [0,1]. 2(t) and 2(r,f) are n;- and ny;-dimensional state
" vectors, respectively, and £(f) and {(r,l) are zero-mean
random processes with arbitrary statistical properties.
z,and 2z, denote 92/9¢ and 3z/dr, respectively. Observations
of the system consist of the ns;-dimensional vector y(?),
related to the states by

y(t) = h(a:(t),z(rl*,t),- - ',Z(?'.Y*,t),t)

+ fl Hz(rt),r,t) dr + n{t) (3)
0

where 5(t) is a zero-mean measurement error with arbitrary
statistical properties and 0 < 7 < --- <1z < 1and 0 <
r* < -+ < r,* £ 1. Thus, the observations can consist
in general of the lumped parameter state a(f) and the
distributed parameter state z(rf) at vy measurement
locationis and integrated over the spatial domain of the
system. Initial conditions for (1) and (2) are

z(0) = x 4)

2(r,0) = zo(r). (5)
The boundary condition at » = 0 for (2) is

2(0,¢) = b(x(?))- (6)

We shall now show that by appropriate modification
of the system (1)-(6), four important classes of time delay
and mixed lumped and distributed parameter systems
result.

Nonlinear Systems with Multiple Constant Time Delays

The system (1)-(6) can be reduced to the following non-
linear lumped parameter system containing multiple
constant time delays:

X = f(l'(f),ilf(f - al))' . ;9“({ - aﬂ)’t) -+ E(t) (7)
y(&) = h@®,x( — o™, - ,x(t — a,®)) + 28 (8)
) = ¢(), — amax <L L0

omax = max(ag,ea,”™) ¢
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where 0 < oy < - < ggand 0 < * < +++ < %
This ecan be done by setting K = H =g = ¢ = 0,b(z(t)) =
z(&), (and hence, 1y = n1), M (1,f) = amax™L 7+ = @:/ Umaxs
7% = @;*/Omax, and 2(r,0) = ¢(—ram.x). Then, 2(r,t) =
z(t — @) and z(r;%0) = z(t — «;%). In the formulation
(7)—(9) there are 8 constant time delays in the state equa-
tion and y constant time delays in the observation equa-
tion. These delays need not be equal.

Nonlinear Systems with Multiple Time-Varying Delays

The system (1)-(6) can be reduced to the following non-
linear lumped parameter system containing multiple time-
varying delays:

& = flz@alt — @), 2t — @) + £0 10
y(© = k(@2 — a*@),- -2 — a,*(1),0) + () (A1)

at) < 1, i=12,-p (12)
&) <1,  j=12+ - (13)
x(t) = ¢(t), — omax < E L0 (14)
tmax = Max(a(0),- - -,,(0),01%(0),- - +,0,*(0)).  (13)

Todosoweset K =H =g=¢=0,8=7v=1,r =
n* = 1, b(z(@) = [2T®),2T7®),-- - ,aT® 1, an ny = (p +
w)ny — dimensional vector consisting of p -+  identical
vector elements z(t), M(rt) = [M,F0)] an na X 7g
matrix with 7, X #; matrix components 37 ;; defined by

0, 15 ]
1 — P& R
I, 1= 1,2,---,p
o
ﬂi[,'j = 7 = J (16)

1 _— 7'O'£*i_p .
—— 1, i=p+ 1L p+ o

[2 2 SN

Also we let the ne-dimensional vector z(r,t) = [227(r,0),- - -,
2,7 ()23 (r,0), - - ,2,* (r,6) ]” where each z:(r,f) or z;*(r,t)
is an ny-dimensional vector, and set 2;(r,0) = ¢(—ra:(0)),
z;¥(r,0) = ¢(—~rea,;*(0)). Then 2z:(1,l) = z(t — «:(t)) and
2*(1,8) = z(t — a;*()). Conditions (12) and (13) insure
that the time delays do not increasge faster than time itself.

Mized Nonlinear Lumped and Hyperbolic Distribuled
Parameter Systems
Setting K = H = 0,5 = 1,and , = 1, we obtain the
mixed lumped and hyperbolic distributed system
(1) = fla@®.2(L),1) + &) (17)
z2(rl) = =MDz + g0, + 00 (18)
y(t) = h@‘(@;z(ﬁ*;t})' ' ',Z(Ty*,lf).t) + 77(0 (19)

subject to (4)~(6). Thus, (17)-(19) represents processes in
which transportation lags are accompanied by phenomena
such as dissipation of mass and energy, fluid mixing, and
chemical reactions. In such cases, differential-difference
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equations are inadequate in deseribing the svstem. The
importance of this elass of systems has been previously
discussed by Hiratsuka and Ichikawa [24] and Aggarwal
[25].

Nonlinear Systems with Functional Time Delays

The system (1)-(6) can be reduced to the following
nonlinear lumped parameter system containing functional
time delay:

() = f@@x(t — o), -2t — ag)d)

+ fo T Kool — @) ed) dee + B (20)
y(@® = h(z@®2(t — &™), -2 — a,®)0)
+ :m" Hox(t — a)yal) de + n(0)  (21)
(@) = ¢, — cmax <1< 0
Qmax = Max (ag.a,™) (22
where0 < oy < -+ < agand 0 < * < -+ < @, * This

can be done by setting g = ¢ = 0, b(x(®)) = 2(!). (and
hence. ne = m). M) = awax™, 70 = @/ omax. 7,5 =
o max. T = o ay, KEEDIE = owax Kolz(r.0).
Omax M), Hz(rD), 1) = amex Ho(z(r), amsx rf), and
2(r,0) = ¢(—ramas). Then 2(r.t) = z({ — ai). 2(r;*f) =
2t — %), and 2(r,l) = 2(t — «).

I11. DERIVATION OF THE FILTER

The derivation of the filter for the syvstem of (1)-(6)
consists of two parts. First, we formulate the problem of
fixed time smoothing and present the necessary condition
for optimality in the form of a two-point boundary value
problem. Sceond. we convert the smoothing problem into
the filtering problem using a formulation based on differ-
ential sensitivities [26]. The technique has several desir-
able features: 1) no a preori assumptions regarding the
form of the filter are required; 2) the exact interpretation
of the so-called covariance matrices results; and 3) an
indication of the form of the exact filter result=. Although
the derivation of the approximate nonlinear filter could
have been carried out by invariant imbedding (for ex-
ample, sce Hwang ef al. [12]). the present technique is less
cumbersome. In this section we shall present the detailed
derivation for the case of K = H = 01in (1)-(6). We do
this only for the convenience of the reader =0 as to avoid
details which are more tedious than need be given. Be-
cause the form of the filter for the case of nonzero kernels,
K and H, can be obtained so readily from that for K =
H = 0, we merely present the filter in Seetion IV.

Statement of the Problem

Consider the svstem (1)-(6) with K = H = 0. The
state estimation problem is: Given any fixed T > 0 and
observations y(f), 0 < ¢ < T, it is desired to estimate x(¥)
and z(r.f) for 0 < ¢ < T,0 < » < 1. This iz the smoothing
problem. The estimation eriterion shall be to minimize
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T
¥ = fo (%= £ Ro(®)(& — f) )

T
+ fo (4= b QO — 1) ) e

+ L i { fo ' fo 1(zl(r,t) + M (rDz(r,)

- g(Z(i’,i)J’,t). Rl(r.’s'{) (21(8_,1‘) + ﬂ[(s)t’)zs(s.‘t)

— g(z(s,8).5,0) ) drds} dt (23)
where the matrices Ro(f) and @(¢) are symmetric positive-
definite.

Ry (r,s,0) 1s defined by

1
[ Rep Biosn ap = 1560 =9 @1

where RB,*(r,s,) is a positive-definite, svmmetric matrix:
Ri+(rsit) = (Ry*(s,n.6))7. 6(-) is the Dirac delta function
and I is the identity matrix. Although the weighting
matrices Ro(f) and Q(¢) and matrix B, *(r.s,t) are only re-
stricted to be symmetric positive-definite, and satisfy (24),
they can be chosen to reflect the statistical properties of
the stochastic variables £(1).§ (), and #(f) if statistical
information about these errors is known.

We first reformulate this problem as an optimal control
problem, i.e., it is desired to minimize

= j;T {u(),Ro@®u(d) ) dt

T
+ fo (y = hQO ~ 1)) d

+ fOT{fol j:(v(r.t).Rl(r.s.t)v(s.t))drds} dt (25)

subject to the constrants

() = fla(®).2(r.0),- - - 2(rp.0.0) + ulf) (26)
z,(rt) = —MGDz,(r0) + gzGH.rt) + el 27)
2(0.) = blax(H). (28)

The necessary conditions for optimality corresponding
to (25)-(28) are readily derived through adjoining (26)-
(28) to the objective (25) by Lagrange multipliers A(¢) and
o(r.t) and then taking first variations. Only the results are
presented here, where we use the earat ~ to indicate the
optimal values. and the notation (- /T) in the arguments
to denote the dependence of the optimal =olution on the
observation interval [0.7]. The optimal values of Z(t/T)
and 2(r.t'T) result from the solution of the following two-
point boundary value problem [27]:

FET) = f = 3R ONET) (29)

1
s (riT) = —Ms +§— 1 f Ri-(rs)6(s.t:T) ds  (30)
0

At'T) = 2h7QO(y — B) — [7AET)

— b,7MT(0,0¢(04/T) (31)
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4 A A
¢:(rt/T) = 2 21 W ooy m@O (y — R)S(r — 7:%)

B
— glfT ey A/ T)o(r — 12)

— 3,76 t/T) — (M™(r,0)e(r,t/T)), (32)
AO/T) = XNT/T) =0 (33)
¢(r,0/T) = ¢(»,T/T) =0 (34)
20,t/T) = b(zEt/T)) (35)
d(1t/T) =0 (36)

where f denotes f(@@E/T)s(r,t/T), - 2(rgt/T),P), ete.
Equations (29)—(36) represent the boundary value problem
which must be solved to produce the optimal least square
smoothed estimates of z(t) and z(r,t) when data are given
over 0 < ¢ < T. The optimal smoothing results for each
of the special cases discussed in Seetion IT ean be deter-
mined from the appropriate simplifieation of these equa-
tions. :

Differential Sensitivities

In the above two-point boundary value problem we can
express the solutions #(¢/T) and 3(r,¢{/T) in terms of the
Lagrange multipliers by

2@/T) = xIMt/T),6(s,t/T)] (37)
20 t/T) = 2lr A/ T),6(s¢/T)],  s€[0,1]. (38)

Let /66 denote the functional derivative and define the
first-order differential sensitivity matrices P**, P*?, P* and
P= by

o z(t/T)

P=R/T) = =2 KT )
z2 _ M
P=(st/T) = S )
2T( .. _ ag(’r’i/T)
P=(rg/T) = —2 AT )
Pzz(T,S,t/T) = —9 M (42)

86 (s,t/T)

Then, using the chain rule of ecalculus, the partial
derivatives of I, %, and % with respect to 7 can be ex-
pressed as

#2(t/T) = —%{Pﬂ(t/T)M(t/T)
1 |
+ fo P25t/ T)ér(s,t/T) ds} (43)
2p(rt/T) = —3 {fl P(rst/T)ép(s,t/T) ds
0

N puo-,t/T)xT(t/T)} (4)
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1
antrt/T) = —3 4 [ st/ Dstoy/T) as

+ P:I(r,t/mT(t/T)}. (45)

These equations describe the time evolution of the optimal
solutions, Z and 2, as the length of the observation interval
T varies.

Now let ¢(t/T) be whatever we desire to estimate in the
system, based on observations y(7), r € [0,T], and denote
the optimal estimate of ¢(t/T) by §(/T). Since we are
interested in the optimal filter estimate, we seek §(7/7),
and, in particular, the total derivative dg(T/T)/dT. We
note that

do(T/T
Q(dfl{ ) = Qz(t/T)lt=T + QT(t/T)]t=T

which we write for convenience as

dg(T/T)

i = WO/ + (/7).

(46)
Thus, the total derivative of the quantity ¢(7'/T) is a sum
of two terms, one representing the dynamies of the system,
4:(¢/ ), 7, and the second the updating of the estimate
in the face of new observations, §-(/T},;_ . This result
was demonstrated for lumped parameter systems by
Padmanabhan [26].

When §is also a function of one or more spatial variables,
4(r,s,t/T), then (46) becomes

84(r,s,T/T)

aT = (_‘Zz(T,S,t/T)L=T + QT(T:Sft/T)’t:T (47)

which we write for convenience as

84(r,s,T/T)
aT

We emphasize that each term in (47), and hence (48),
represents a different partial derivative. In particular, the
left-hand side (LLHS) of (47) and (47) is the analog to the
total derivative in (46), whereas the right-hand side
(RHS) of (47) and (48) consists of partial derivatives with
respect to each of the arguments t and 7T in (-,t/7T),
respectively.

= §,(r,8,T/T) + 4z(r,s,T/T). (48)

State Filter Equations

We now wish to derive the dynamical equations for
dz(T/T)/dT and 03(r,T/T)/8T which represent the rate
of change of the filiered estimates with 7. Using (46) and
(48), these can be expressed as

GIT) _ o /Ty + 20T/ T) (49)
T
ag(:;# = 3,(nT/T) + %2(r,T/T). (50)

Equations (33) and (34) imply that
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aNT/T) _ 86(r,T/T)
ar T

Using (46) and (48), (51) ecan be written

0. (51)

Ar(T/T) +X,(T/T) = 0 (52)
é+(r,T/T) + 6¢,(,T/T) = 0. (53)

Then (31)-(34) and (52)—(53) give
A(T/T) = —2h,"Q(T)(y — k) (54)

816, T/T) = =2 2 W r m@(D (g = Bos = 1. (55)
Substituting (54) and (55) into (43) and (44), we obtain
T(TIT) = P(T/TYRIQ(T(y — )

5 PrAT T 2@ = ) (56)

2T(r)T/T) = Z PZZ(T;TI'*7T/T);I'Tz(ri*,T/T)Q(T)(y - il)

=1

+ P=(,T/TYRTQ(TY(y — k). (57)

On the other hand, (29), (30), (33), and (34) give
T(T/T) = f (58)
5,(r,T/T) = —M2, + §. (59)

Hence, (49), (50), and (56)-(59) constitute the state filter
equations. The boundary condition for 2(0,7/7T) is

20,7/T) = b((T/T)). (60)

Covariance Equations

We now need to derive the dynamic equations for the
differential sensitivities, P#=(T/T), P=(s,T/T), P#(r,
T/T), and P=*(r,s,T/T), to complete the specification of
the filter. These equations are usually referred to as the
covariance equations by analogy to the linear case,
although they are not the true covariances in the non-
linear case. In order to derive these equations, we need
the total derivatives with respect to T of the four differ-
ential sensitivities as in (49) and (50) for the state filter
equations. As we know, ecach oP(-,T/T7)/8T will be a
sum of two terms, P,(-,7/T) and P,(-,T/T). Tor the
general nonlinear ease we are considering, it ean be shown
that P,(-,T/T) involves the second-order differential
sensitivities, and, hikewise, the second-order differential
sensitivities involve the third-order differential sensitivities
ete. Thus, in general, it 1s not possible to close the system of
equations. For this reason, we will approximate aP(-,
T/T)/8T by P,(-,T/T), cnabling us to obtain a closed set
of equations.

The basic approach is that we shall derive two expres-
sions for cach of the quantities,

2 15 /D) 3 et/ T (61)

ot
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and equate the two expressions for each of the quantities
while setting ¢ = T'. Since each of the quantities aboveisa
continuous function of ¢t and 7', we ean write

a = . i kS
5 Hrt/T)] = o7 [x/T)] (62)

AT LA

Py (2(r,t/T)] = P [2r,8/T) ]. (63)
Substituting (29) in the RHS of (62) gives

3 . (&

& D) = £ + [ {'g )

< Ep(rt/T) dr — 3Ry DAt/ T)  (64)
which, with the help of (43) and (44), can be written as

(% [2r(t/T)] = —% |:.sz”(¢/ T)

B .
—+ Z z(r;.z/T)PZI('ri't,/' T) + Ro_l(l‘)]
i=1

1 8
f { .fz(r',t,'T)Pzz(riys,vt./T)
0 li=1

+ f,P”(s,t/T)} dr(s,t/T) ds.

A (/T —

[N

(65)
On the other hand, using (43) we ean write

2 D= 4 [P,“(t/T)XT(z._,/T)

+ fo P s/ TYon (5.7 T) ds]
2] )
— 1| par — A/ T
Z[P /7 2 et/

i
d
+ f Pr(s,t/T) py [67(s,t/T)] ds:l (66)
0
which gives us two expressions for the first quantity in
(61).
To obtain two relations for the second quantity in (61)

we first substitute (30) in the RHS of (63), giving

aJ i . . ;
(;t. [2‘7-(7’171)] = _ﬂ[-érr + {/z(r,t_."T)ZT<"1["' T)

-z Ll Ri*t(rs.)é0(s,t/T) ds  (67)
which, with the help of (44) and (45), can be written as
/D) = =3 (=M 0OPCUT)

+ g.P*(rt/ T) R (¢/T)
—3 [J: b= ()P (r,s b/ T)
+ GorrimPPE(r,8,t/T)

+ Rﬁ(r,s,t)} ér(s,8/T) ds]. (68)
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On the other hand, using (44) we ean write

2 leatr/T)) = =3 [ [ Pt spmastoam as
+ P,”(r,t/T)XT(t/T):I

_ _[ f * P(rs1/T) 2 lex(a/T)] ds

+ P(ri/T) 2 [xT(t/T)l] (69)

Now we equate (65) and (66) setting ¢ = 7. For the
equality to hold the coeflicients of Ar(¢/T), ér(s,t/T), and
37(0,4/T) must be zero at { = T. Doing so, we obtain
[where it should be noted that some lengthy algebraic
manipulations are required to evaluate the last two terms

of (66)]
PF(T/T) = fP=(T/T) + P=(T/D)f."

f ey P (r,T/T)

CIR] M'm

+ Z P=(r, T/ T sy
+ P=(T/TYV=(T/T)P=(T/T)

+ E’ P=(TyTYVT T)P=(r.*T/T)

P T/TYVET/T)P(T/T)

=1
Y. Y P’
+ 3 3 PEeMT/TY)VE(T/T)P™
i=135=1

- (rMT/TY + B~ Y(T)
= f.P7(s,T/T) 4 P*(s,T/T)§" sio.v/m
— P& (s, T/TYM"(s,T)

(70)
P(s,T/T)

ﬂ A
+ 2_:1 fz(r;',T,’T)PZZ(TQ&T/T)
+ P/ T)VHT/T)P™(s,T/T)

+ 3 PAT/T)VA(T/T)P(r%,5,T/ T)
i=1

£ 3 PG T/ TYVE(T/T)P=(s,T/T)
=1

+ 3 2 P T/T)VHT/T) P
i=1j7=1

* (Tj*,S,T/T)

P=(0,T/T) = P*=(T/T)b,".

(71)
(72)

Similarly, equating (68) and (69) we obtain (again not-
ing that the evaluation of the last two terms of (69)
requires some algebraic labor)

PA(rs,T/T) =
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Gotr, 7P (r,8,T/T)

+ P=(r,s,T/T)q  stst/m)

— M, T)P*(r,s,T/T)

— P(r,s,T/TYM7(s,T)

+ P=(r,T/TYV**(T/T)P*>(s,T/T)

+ X P T/ TYV(T/T)P=(r%5, T/ T)
+ ; P(rs*, T/ TV (T T)P*(s, T/ T)

+ Z Z P(ry*T/TYVY

i=1j=
- (T/TYP=(rs*
+ R1+(T)S)T)
= P#(r,T/ T)sz + §z(r,T/T)P “(r,T/T)
— M@ T)P*(r,T/T)

,8,T/T)
(73)
P#(r,T/T)

8 A
+ ; P T/ TV ey
+ P=(r,T/T)V**(T/T)P*(T/T)

+ 3 P T/ TYV (T T)P(T/T)
=1
+ 3 P T/TYVAT /TIPS % T/ )

+ Z Z Pe(rr*T/TYVHT/T)

- P#(r*T/T) (74)
P#(r,0,T/T) = P=(r,T/T)b,". (75)
The quantities V**, V*, V= and V¥ are defined by

VE(T/T) = [h"QIT)W(T) — M), (76)

VE(T/T) = B2/ m@(T) Y(T) — ) L,
i=12---vy (77)

VAT/T) = [hSQTYY(T) — B)Lgnzymy
i=12,---y (78)

VIT/T) = %0 m@TYYT) — B Lryimye

5,7 = 1,2,-«-,v. (79)

The remaining boundary conditions for (70), (71), (73),
and (74) can be obtained by differentiating (35) with
respect ta 7,

aj;?j/;;) Ar@/T) + f gi((o tf g ér(s,t/T) ds
_ g W) 53(t/T)
- aX(t/T) Ar(t/T) + b f&r( s ér(st/T)ds (80)

and then equating the coefficients of A(¢/T) and d¢,(s,t/T)
to zero at ¢ = T'. The result is
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P=(0,T/T) = b,P=(T/T)
P=(0,s,T/T) = b,P™(s,T/T).

(81)
(82)

The entire filter is summarized in Table I. In the column
of initial conditions, $(0/0) and 2(r,0/0) represent our
best initial guesses of 2y and z(r). The initial conditions
P=(0/0), P¥(s,0/0), P#=(r,0/0) and P#(r,s,0/0) are
basically arbitrary. In the linear, white noise case it ean be
shown that

P=(T/T) = El(@(T) — 2(T/T)(@(T) — (T/T)7]
(83)
P2, T/T) = E[(x(T) — 2(T/1)(2(»,T)
— 2(r,T/T))T] (84)

P=E(r,T/Ty = E[(z(r,T) — 0. T/T))((T) — HT/THT]
(85)

P(rs,T/T) = E[(z(r,T) — 20, T/T))(2(s,T)

— (s, T/T)T].  (86)

These relations may be used as a guide in choosing
P==(0/0),- - - ,P*(r,s5,0/0).

Discussion of the Filter

The exact equations for the four covariance matrices
are of the form

dP(T/T)
dT

where P can denote P, P*2, P or P>,

We noted carlier that we would negleet the second terms
on the RHS of these equations. Let us give some indieation
as to how these negleeted terms might be ealeulated.
Employing the chain rule, we have for Pz7(nt/T),
for example,

= P(T/T) + P(T/T) (87)

. _aP=(nt/T)
P t/T) = /) Ar(t/T)
1 5P12(T,t/T) . /m
+ j; W O'T(V,t, T) dv. (88)
The terms

aP*(rt/T) &P*(rt/T)
ONE/T) 8¢(v,t/T)

are n; X n2 X nyand n; X n. X n: matrices, respectively,
which are the second-order differential sensitivities. Thus,
the neglected terms in (87) involve second-order differ-
ential sensitivities, which, in turn, depend on third-order
differential scnsitivities, ete. As with other nonlinear
stochastic problems in mathematies, the exact solution of
the nonhinear filtering problem is unavailable due to a
closure problem. In the linear, white noise case it can be
shown that the second and higher order differential sensi-
tivities are identically zero. It is the negleet of the second
term on the RHS of the equations of the type (S7) that
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TABLE I
FILTER FOR THE SysTEM OoF (1)-(6) wirhn K = H = 0

Initial
Conditions Boundary

Equations (arbitrary) Conditions
Estimates
HT/T) (49),(56),(58) £(0/0) None
3, T/T) (50),(57),(39) 2(r,0/0) (60)
First Order Differential
Sensitivities
Pzz(T/T) (70) Pzx(0:0) None
P=(s,T/T) (71) Pr(2,0/0) (72)
Pz(r T/T) (74) P=2(r,0/0) (81)
P=(r,5,T/T) (73) P(r,5,0/0)  (75),(82)

constitutes the approximation inherent in the nonlinear
filter. Inclusion of higher order differential sensitivities
increases the complexity of the filter, the implementation
of which would be considerably more difficult computa-
tionally. As with all approximate nonlinear filters, their
validity can only be assessed through computer simula-
tion.

IV. FILTERING IN NONLINEAR SYSTEMS DESCRIBED BY
FuxcrioNnan DIFFERENTIAL EqQUuaTions

The method of derivation of Section IIT can be used in
the case when K and H are nonzero in (1) and (3). By
replacing i by & + f§ H drand f by f + J{ Kdrin ¥ in
(23), the filter equations for svstem model (1)-(3) can
readily be obtained. The filter in this ease is summarized
below. The state filter is

d¥(T/T) _ ; o tata T/
WD _ g+ fo K[36.T/T)6,T] do
+ P==(T/TYRTQ(T)S(T/ T)
+ B PN D sr QTYHT/T)
1
+ fo P01/ TY A" 011y ®)QUTYS(T/ T) d
(89)
B T/T) . _aps, 4 g+ 3 P T/ T oy
aT i=1 ‘
- Q(TY(T/T)
+ P=(r,T/TATQ(T)S(T/T)
1
+ [ Peea /AT i
- (O)Q(T)(T/T) do (90)
H0.T/T) = b(z(T/T)) ©1)
where

S(T/Ty = y(T) — h(@E(T/T) &0 *T/T), -,
- 20,2 T/T),T) — fl H(0T/T7T)0,T) do. (92)
0

The covariance equations are (corresponding to (70),
(71), (73), and (74) for K = H = 0)
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TABLE 11
FiurER FOR THE SysTEM (1)-(6) witn K = 0, H # 0
Initial
Conditions Boundary

Equations (arbitrary) Conditions
Estimates
£T/T) (89) £(0/0) None
2(n,T/T) (90) 2(r,0/0) (1)
First Order Differential
Sensitivities
P==(T/T) (93) P==(0/0) None
Pae(s, T/T) (04) P=2(3,0/0) (72)
P=(r,T/T) (95) Pz=(r,0/0) (81)
P=(r,s,T/T) (96) Pe2(r,5,0/0)  (75),(82)

1
PET/T) = RESof (10)] + [ Ruoaym(®P=67/7) do

+ [ PO/ 10 ® a0+ T/ T (93)
P#(s,T/T) = [RHS of (71)]

+ [ Baozm@Po05,1/1) @ 4 woGT/T) (09
P, T/T) = [RHS of (74)]

+ [ P st DR @ o+ W T/T) (95)

PA(rs,T/Ty = [RHS of (73)] + W=(rs,T/T) (96)

where the term V(T/T) will be defined below (the defini-
tion differs slightly from that in Section IIT). The terms
W*M.,T/T) are defined by

T17“)\('7';71/7')
1
- f P T/TYV(, T/ TP, - T/ T) dg
4]
1
+ f e e T/TYV=(,T/TYP™(-,T/T) d¢
0

v 1
+ 2 f P T/TYV(,T/TYP?(5,- T/ T) dt
i=14J0

+ 3

i=1

1 1
+ f fPM('zf,T,/T)T""fz(s“yv,T/T)sz(v,',T/T) dg dv
0J0

1
Pe(- 0 T/TYVH(E, T/ TP (s, T/T) dt
0

1 1
+f f Pe( 6, T/TYV (5,0, T/ TP, T/T) di dv
0 0

1
+ j; PeC e T/ TV T/T) P, T/T) s (97)

where p = 2z or z and A = z or z. The unspecified left
argument of cach term is r if 4 = 2z and does not exist if
u = 2. The unspeeified right argument of each term is s
if A\ = zand does not existif A = a.

In this case the V matrices are defined as follows (the
dependence on T is suppressed for convenience):

Ve = [ﬁITQ&)]I Vet o= [ﬁITQ(ﬁ]z(n*)
Vi) = —hTQH,p®) V' = [W.mQ8,

i
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EXTERNAL
HEAT
EXCHANGER

| ya(f)

REACTOR r=0.5

x(t)

y, (D

— 2z (1,1}

F

Well-stirred chemical reactor with external heat exchanger.

Fig. 2.

VY = [ﬁTz(,i*)Qci’ L

Py

VEQ) = —h 0@ 0 (0)
V() = —H0)70)Qh:  VH(0) = —H,0)7(0)Qh,
Vi#(0,) = —H. (0)QH, ()
Vi#(0,) = — [H,TOQH() L)

-

Vi#(0) = [Hp"0)QW — k) L@

The filter in this case is summarized in Table I1.

(98)

V. ESTIMATION OF TEMPERATURE IN A RECYCLE REACTOR

An important problem in the process industries is the
estimation of the temperature distribution in a chemical
reactor. A rather common configuration for the execution
of highly exothermic reactions is a system consisting of a
well-stirred chemical reactor a portion of the output from
which is recyecled through a heat exchanger back to the
reactor. By such a design, the temperature of the well-
stirred reactor, in which the reaction is primarily earried
out, is controlled by recycling a fixed fraction of the
effluent through the heat exchanger. Such a system is
shown in Fig. 2.

Let us consider the problem of estimating the tempera-
tures, z(¢) and z(r,f), in the well-stirred reactor and heat
exchanger, respectively, based on corrupted measurement
of the reactor temperature 2(f) and the temperature at the
midpoint of the heat exchanger, 2(0.5,#). We consider the
case in which the chemical reaction is zero order, that is
the rate of reaction is independent of the concentration of
reactant. Under such conditions, we need not include
differential equations for species concentration, only the
two temperatures, () and z(r,f). If 2() and z(r?) are
made dimensionless, the dynamic behavior of the system
is governed by

. 20z
#() = —0.052 + 0.22(1,1) — 0.001 |:exp( ) — 1]
1+ =z |
2ird) = —2(rt) + 0.1 — 0.001 ex (2—03)
I\, = r\/ . . eXp 1 +Z ’

0<r<1

2(0,0) = z(t), t>0

where the parameters have been chosen to be typical of
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Fig. 3. Comparison of actual and estimated temperatures in
reactor, at midpoint and exit of heat exchanger, x(¢), 2(0.5,¢), 2(1,8),
respectively.

those that might be encountered in practice. The non-
linearity of the system arises from the exponential de-
pendence of the rate of a chemical reaction on temperature.
Note that the chemical reaction proceeds not only in the
well-stirred reactor but also in the heat exchanger, as
indicated by the exponential terms in both state equations.
The observations are given by

() = z@) + n@ n@® = 20051 + @)

on the basis of which we desire to estimate «(¢) and z(r,7).
In chemieal reactor problems of this type it is often
acceptable to neglect dynamical noise [28]. The observa-
tion errors 7 and 7. arise because of turbulent eddies
passing the temperature probes.

For the purpose of numerical simulation we assume
that the true, but unknown, initial states are z(0) =
2(r,0) = —0.1. The observation errors were gencrated by
7:(8) = 0.3G(0,1), 7 = 1,2, where G(0,1) is a normally
distributed random variable with zero mean and unit
standard deviation produced by a random number gener-
ator. We assume that the level and character of this noise
is unknown. Numerical experiments were conducted with
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the following parameter values: #(0) = 2(+,0) = 0.25,
P=(@) = 2.0, P(s,0) = 2.0, P*(r;s,0) = 2.0, and @ =
1.0. Note that because we do not have any a priori in-
formation on the initial states or the noise, these param-
eters are arbitrary. Numerical implementation of the state
and filter equations was carried out using a standard finite
difference scheme and required about 40 scconds on an
IBM 370/155 for an experimental time of ¢ = 40.

The filter performance is shown in Fig. 3, where the true
states, z(f), 2(0.5,t), 2(1,¢{), and their estimates #(f),
2(0.5,), and 2(1,{) arc compared. Experiments with
different initial guesses and values of @ confirmed the
robustness of the filter for the relatively significant
measurement noise considered here. These results point to
advantages in the use of a filter in a feedback control
system for chemical reactors of the tvpe considered here.

V1. ConcLtsioNs

In this paper we have derived approximate smoothing
and filtering cquations for a general class of nonlinear
functional differential equations, (1)-(6). From these
results we have obtained filters for the following classes of
systems:

1) nonlinear lumped parameter systems with multiple
constant and time-varying delays;

2) nonlinear systems of coupled ordinary and hyper-
bolic partial differential cquations; and

3) nonlinear systems having functional time delays.

With the exception of the linear filters of Kwakernaak
{18] and Koivo [20], which are encompassed within our
general results, the filters developed herein are new.
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