3,267 research outputs found

    A family of asymptotically stable control laws for flexible robots based on a passivity approach

    Get PDF
    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility

    A passivity based control methodology for flexible joint robots with application to a simplified shuttle RMS arm

    Get PDF
    The main goal is to develop a general theory for the control of flexible robots, including flexible joint robots, flexible link robots, rigid bodies with flexible appendages, etc. As part of the validation, the theory is applied to the control law development for a test example which consists of a three-link arm modeled after the shoulder yaw joint of the space shuttle remote manipulator system (RMS). The performance of the closed loop control system is then compared with the performance of the existing RMS controller to demonstrate the effectiveness of the proposed approach. The theoretical foundation of this new approach to the control of flexible robots is presented and its efficacy is demonstrated through simulation results on the three-link test arm

    Passivity/Lyapunov based controller design for trajectory tracking of flexible joint manipulators

    Get PDF
    A passivity and Lyapunov based approach for the control design for the trajectory tracking problem of flexible joint robots is presented. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. Feedforward selection and solution is analyzed for a general model for flexible joints, and for more specific and practical model structures. Passivity theory is used to design a motor state-based controller in order to input-output stabilize the error system formed by the feedforward. Observability conditions for asymptotic stability are stated and verified. In order to accommodate for modeling uncertainties and to allow for the implementation of a simplified feedforward compensation, the stability of the system is analyzed in presence of approximations in the feedforward by using a Lyapunov based robustness analysis. It is shown that under certain conditions, e.g., the desired trajectory is varying slowly enough, stability is maintained for various approximations of a canonical feedforward

    Canonical Subproblems for Robot Inverse Kinematics

    Full text link
    The inverse kinematics (IK) problem for many common robot manipulators may be decomposed into canonical subproblems which are solved by finding the angles on circles where they intersect with other geometric objects. We present new algebraic solutions and geometric interpretations for six subproblems using a linear algebra approach, and we demonstrate significant computational performance improvements over existing IK methods. We show that IK for any 6-dof all revolute (6R) robot with three intersecting or parallel joint axes may be solved in closed form using subproblem decomposition. For any other 6R robot, subproblem decomposition reduces finding all IK solutions to a search over one or two joint angles. The first three subproblems, called the Paden-Kahan subproblems, are Subproblem 1: Circle and Point, Subproblem 2: Two Circles, and Subproblem 3: Circle and Sphere. The other three subproblems, which have not been extensively covered in the literature, are Subproblem 4: Circle and Plane, Subproblem 5: Three Circles, and Subproblem 6: Four Circles. Our approach also finds the least-squares solutions for Subproblems 1-4 when the exact solution does not exist.Comment: 14 pages, 8 figures. Updated with new solution methods and timing result

    Redundancy parameterization and inverse kinematics of 7-DOF revolute manipulators

    Full text link
    Seven degree-of-freedom (DOF) robot arms have one redundant DOF which does not change the translational or rotational motion of the end effector. The redundant DOF offers greater manipulability of the arm configuration to avoid obstacles and steer away from singularities, but it must be parameterized to fully specify the joint angles for a given end effector pose. For 7-DOF revolute (7R) manipulators, we introduce a new concept of generalized shoulder-elbow-wrist (SEW) angle, a generalization of the conventional SEW angle but with an arbitrary choice of the reference direction function. The SEW angle is easy for human operators to visualize as a rotation of the elbow about the line from the shoulder to the wrist and has been used in the teleoperation of space robot arms. Since the conventional SEW angle formulation is prone to singularities, we introduce a special choice of the reference direction function called the stereographic SEW angle which has a singularity in only one direction in the workspace. We prove that such a singularity is unavoidable for any parameterization. We also include expressions for the SEW angle Jacobian along with singularity analysis. Finally, we provide inverse kinematics solutions for most known 7R manipulators using the general SEW angle and the subproblem decomposition method. These solutions are often closed-form but may sometimes involve a 1D or 2D search. Inverse kinematics solutions, examples, and evaluations are available in a publicly accessible repository.Comment: 19 pages, 13 figure

    Quantifying Isoniazid Levels in Small Hair Samples: A Novel Method for Assessing Adherence during the Treatment of Latent and Active Tuberculosis.

    Get PDF
    BackgroundTuberculosis (TB) is the leading cause of death from an infectious pathogen worldwide and the most prevalent opportunistic infection in people living with HIV. Isoniazid preventive therapy (IPT) reduces the incidence of active TB and reduces morbidity and mortality in HIV-infected patients independently of antiretroviral therapy. However, treatment of latent or active TB is lengthy and inter-patient variability in pharmacokinetics and adherence common. Current methods of assessing adherence to TB treatment using drug levels in plasma or urine assess short-term exposure and pose logistical challenges. Drug concentrations in hair assess long-term exposure and have demonstrated pharmacodynamic relevance in HIV.MethodsA large hair sample from a patient with active TB was obtained for assay development. Methods to pulverize hair and extract isoniazid were optimized and then the drug detected by liquid chromatography/ tandem mass spectrometry (LC/MS-MS). The method was validated for specificity, accuracy, precision, recovery, linearity and stability to establish the assay's suitability for therapeutic drug monitoring (TDM). Hair samples from patients on directly-observe isoniazid-based latent or active TB therapy from the San Francisco Department of Public Health TB clinic were then tested.ResultsOur LC/MS-MS-based assay detected isoniazid in quantities as low as 0.02ng/mg using 10-25 strands hair. Concentrations in spiked samples demonstrated linearity from 0.05-50ng/mg. Assay precision and accuracy for spiked quality-control samples were high, with an overall recovery rate of 79.5%. In 18 patients with latent or active TB on treatment, isoniazid was detected across a wide linear dynamic range.ConclusionsAn LC-MS/MS-based assay to quantify isoniazid levels in hair with performance characteristics suitable for TDM was developed and validated. Hair concentrations of isoniazid assess long-term exposure and may be useful for monitoring adherence to latent or active TB treatment in the setting of HIV
    • …
    corecore