A

fnmm

Wi

(e

i

) r r

@ https://ntrs.nasa.gov/search.jsp?R=19930007519 2020-03-17T09:25:06+00:00Z

PASSIVITY/LYAPUNOV BASED
CONTROLLER DESIGN FOR
TRAJECTORY TRACKING OF
FLEXIBLE JOINT MANIPULATORS

NAGCUW /3383

by

Pierre Sicard, John T. Wen and Leonardo Lanari

Rensselaer Polytechnic Institute
Electrical, Computer, and Systems Engineering Department
Troy, New York 12180-3590

August 1992

CIRSSE REPORT #121



sl |

I |

1 |




L

|
TR —Y

nm

[ S

bl

kL)
.

B

dd W

e

L

e

rrooenn IR, (I [

|

Passivity /Lyapunov Based Controller Design for
Trajectory Tracking of Flexible Joint Manipulators

Pierre Sicard*, John T. Wen* and Leonardo Lanari**

* NASA Center for Intelligent Robotic Systems for Space Exploration
Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA

** Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”, Via Eudossiana 18, 00184 Roma ITALY

Abstract

——

A passivity and Lyapunov based approach for the control design for the trajectory tracking problem of
flexible joint robots is presented. The basic structure of the proposed controller is the sum of a model-
based feedforward and a model-independent feedback. Feedforward selection and solution is analyzed
for a general model for flexible joints, and for more specific and practical model structures. Passivity
theory is used to design a motor state-based controller in order to input—-output stabilize the error system
formed by the feedforward. Observability conditions for asymptotic stability are stated and verified. In
order to accommodate for modeling uncertainties and to allow for the implementation of a simplified
feedforward compensation, the stability of the system is analyzed in presence of approximations in the
feedforward by using a Lyapunov based robustness analysis. It is shown that under certain conditions,
e.g. the desired trajectory is varying slowly enough, stability is maintained for various approximations
of a canonical feedforward.

et

1 Introduction

Joint flexibility is well recognized for its adverse effect on stability and performance of robotic manipula-
tors [23, 28]. The main implications of joint flexibility are that the number of degrees of freedom is larger
than the number of inputs, and that the system is not passive from the torque input to the link velocity
as for rigid robots such that most of the control schemes designed for rigid robots are inappropriate
for the control of flexible joint robots. Different approaches have been considered to solve the problem
of controlling robots with joint elasticity including singular perturbation techniques, exact linearization
and passivity based design. Singular perturbation techniques and exact linearization generally require
linear spring assumption and exact knowledge of the system parameters, and are characterized by their
computational complexity and their lack of robustness to parameter uncertainty (for a summary, see
[27]). Furthermore, exact linearization requires zero gyroscopic force, and the feedforward compensation
for linearization and the feedback stabilization are intertwined and errors in the feedforward may affect
the closed loop stability in an adverse way.

The concept of passivity is traditionally defined as an input/output condition describing a class of physical
systems that do not generate energy [18]. This property has been used in the feedback stabilization for
fully actuated rigid robots [29], satellites [6], and flexible joint robots [4, 31]. The passivity property for
flexible joint robots (motor torque and motor velocity form a passive pair) was recognized in [4] and was
used in a proportional-derivative (PD) type controller design. The method requires inherent damping in
both links and motors. Similar results without requiring the inherent damping have recently appeared
in [31]. The PD controller has been generalized to a general passive controller in [22]. This method also



requires inherent damping and furthermore, linear spring assumption. Moreover, a frequency analysis
that yields a non-causal solution is used to find the feedforward. The design of general passive controllers
without the requirement of inherent damping and of the linear spring assumption, and that uses causal
feedforward was presented in [15, 24]. This approach allows to consider both the set point and tracking
problems and does not require a large elastic couphn«y stlﬂ'ness as singular perturbation techniques does.

The basic structure of the proposed controller is the sum of a model-based feedforward and a model-
independent feedback [15, 24]. The feedforward design in the proposed scheme is very similar to the
exact linearization approach, both essentially solve an inverse plant problem, but requires much less
model information in the set point control case, and the additive separation between the feedback and
feedforward implies that errors in the feedforward do not lead to instability. However, the closed loop
performance cannot be arbitrarily assigned and the feedforward for the tracking problem may be complex.
We address the issue of computing a causal feedforward for a nonlinear spring.

Passivity based controllers have been recognized for their robustness to parameter uncertainties [1, 31].
This robustness may allow to simplify the control law for implementation as opposed to exact linearization
techniques for which simplifications may compromise stability. We will analyze the stability of the system

under feedforward approximations.

This paper addresses the following trajectory tracking problem for flexible joint robots:

Given the desired output trajectory described by 84(t) and its derivatives, t > to, design a feedback
control law u(t) so that 8(t) tracks 84(t) in some sense while assuring internal stability of the system.

In Section 2, background information on passivity, and useful definitions and theorems are provided. In
Section 3, the model of the class of systems that is considered and some of its properties are presented.
The proposed approach for controller desrgn which exploits the passivity property of flexible joint robots
is exposed in Section 4. In Section 5, various possible forms of feedforward for the trajectory tracking
problem are presented and the issue of solving the feedforward is addressed. In Section 6, the controller
design is carried out for particular choices of feedforward, referred to as the canonical feedforward com-

pensation schemes, under the assumption that certain conditions are satisfied. Zero—state detectability
of the canonical feedforward compensation schemes is analyzed in Section 7. In Section 8, the stability
of different possible forms of feedforward is analyzed by using a Lyapunov based robustness analysis.
Conclusions are drawn and future work is summarized in Section 9.

2 Passivity and definitions

The notion of passivity of an input—output system, motivated by the dissipation of energy across re-
sistors in an electrical circuit, has been widely used in order to analyze stability of a general class of
interconnected nonlinear systems, e.g. [32, 34]. Passivity was also studied for state-space representations
of nonlinear systems, allowing a more geometric interpretation of notions such as available, stored, and
dlSSlpated energy in terms of Lyapunov functions [38, 39, 40]. This point of view has been specifically
developed in [10, 11] and leads to Lyapunov-theoretic counterparts to many stability results developed
within an mput—output perspective, as well as to a nonlinear form of the Kalman-Yacubovitch-Popov
lemma. The great interest of considering passive (strictly passive) systems lies in the fact that passivity
is invariant under feedback connections and that passive systems are always stable, and under additional
assumptlons asymptotlca.lly stable [17, 18, 38, 41].

[18], necessary and sufﬁcxent conditions for a nonlinear autonomous system with the control entering
lmea.rly to be passive are given. It is well known that passive linear systems are necessarily minimum
phase and conversely, a minimum phase plant ‘with relative degree zero or one can be rendered passive

_via a static state feedback. A similar relationship for nonlinear systems has recently been published [5].
This allows to extend the class of systems to which the stability results for passive systems applies.
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We now present definitions and theorems related to passivity and to the stabilization of passive systems.
The information presented here was mainly drawn from [5, 10, 11, 18, 33, 38, 39, 41, 42, 43]. Other
papers of interest that treat positive realness, which is a subcase of passivity, are [2, 12, 37].

Definition 2.1 [33] A function f : Ry — R™ is an element of the vector space Lp(R4,R™) if

/m [ f(®)|P dt < o0 for p € [1,00)

Define the input and output signal spaces, U., Ve, respectively, as the extended spaces L. (R4, R™), e
the causal extension of Ly(R4,R"):

Lo(Ry,R™) 2 {f: Ry — R | Prf € Ly(R4,R"),¥T € R}
where Pr is the projection operator that truncates f at T
a) f(t) fort<T
(Prf)() = { 0 otherwise

Define the truncated inner product by

A oo
(), o)z & (PraC), ProC))y = [ (Pru(e)T Pro() d
By a dynamical system, we mean an 1/O mapping H : U, — V.. The following definitions are given for
U., Y. being extended L,-spaces, but we will use uniquely L;-spaces in the remaining of the report.

Definition 2.2 [33] For p € [1,00), the function ||-{|, : L[0,00) — [0,00) is defined by

= :
ol = [ 1P
The function ||-||, : Loo[0,00) — [0, 00) is defined by

Hf (Moo = €ss sup [f(2)]
te[0,00)
Definition 2.3 [33] A dynamical system H is L,-stable if

(i) y € L, whenever u € L,, and

(ii) There ezist finite constants k, b such that
loll, < kllull, +6  Yue L,

Definition 2.4 [33]) A dynamical system H is Lo, -stable (Bounded Input-Bounded Output-stable, BIBO
stable) if

(i) y € L, whenever u € Ly, and

(ii) There ezist finite constants k, b such that

l9llo € Kllull +6 Yue Ly



Different definitions for passivity, which characterizes systems that do not generate energy, have been used
[43]. We will adopt one of these definitions, but first will define the more general concept of dissipativity

{10, 11].
Definition 2.5 [11] A dynamical system H is dissipative with respect to the triplet (Q, S, R) if
w(”’ y) = (ys Qy)T + 2 (ya Su)T + (u, RU)T 2 0

for all T > 0 and u € U,, where w(u,y) is defined as the supply rate, and Q, S and R are memoryless
bounded operators with Q and R self-adjoint.

Definition 2.6 [43] A dynamical system H storing no energy at t = 0 is passive if for all T € R, and
all admissible pairs {u(-),y(-)} € {Ue,Ve},

(ya u)T Z 0

The quantity (y, u)y is sometimes defined as the input energy of the system [18]. This nomenclature will
be used here. :

Definition 2.7 [38] 4 dynamical system H storing no energy at t=0is strictly passive if for allT € R,
and all admissible pairs {u(-),y(-)} € {U., Y.}, H — eI is passive for some real constant ¢ > 0, i.e. if

(yu)p —€e(u,u)p 20

Hence, a finite-gain I/O stable system is dissipative with respect to (—1,0,k%I), while a passive sys-
tem is dissipative with respect to (0, %I ,0) and a strictly-passive system is dissipative with respect to
(0,31, —¢) [11]. This definition of strict-passivity corresponds to the definition of U-strong-passivity
(USP) in [10]). Two additional forms of strong passivity as defined in [10] are Y-strong-passivity (YSP)
which corresponds to systems that are dissipative with respect to (—5,%] ,0) for some real constant
€ > 0, and Very-strong-passivity (VSP) which corresponds to systems that are dissipative with respect
to (—¢1, 11, ~¢3) for some real constants ¢; > 0 and &2 > 0.

In [38, 39], different energy quantities are defined. The required energy E; is the energy needed to excite
a system to a given set of initial conditions. The available energy E, is the maximum energy that can be
extracted from a system. The cycle energy E. is the minimum energy it takes to cycle a system between
the equilibrium and a given state. Under mild conditions, these quantities are well defined for a passive

system :

Lemma 2.1 [38] Consider a realization of a passive system and assume that the state space is reachable.
Then E,, E, and E, erist (i.e. E;, E,, E. < ) and are nonnegative. Moreover, 0 < E,, E. < E,.

In principle, these quantities can be used to construct Lyapunov functions as illustrated by the following

theorem.

Theorem 2.1 [39] The set of possible storage functions of a dissipative dynamical system forms a convez
set. Hence, aE, + (1 —a)E,, 0 < a < 1, is a possible storage function for a dissipative dynamical system
whose state space is reachable from the point in space where the storage function attains its minimum.

An important characteristic of the systems studied here is that they satisfy the following conservation of
energy equation [17, 18]:

Input energy = Final energy - Initial energy + Dissipated energy

where, for passive systems, the dissipated energy is always nonnegative.
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In [10], a necessary and sufficient condition for a nonlinear system with the control input entering linearly
to be dissipative is given. The test involves the construction of some functions, including a function
representing the generalized energy of the system. This function is positive for dissipative systems such
that this condition can be used as an aid for the construction of a Lyapunov function for the system.

Input/output and state space stability and stabilization of passive systems have been extensively studied
, and we now present some of these results, but first provide two more definitions.

Definition 2.8 A dynamical system H is said to be zero-state detectable if u(t) = 0 and y(t) = 0 imply
that the state z(t) = 0.

For linear systems, this corresponds to observability.

We introduce here a weaker form of zero—state detectability.

Definition 2.9 A dynamical system H is said to be weakly zero-state detectable if u(t) =0 and y(t) =0
imply that the state z(t) — 0 asymptotically.

There is no consensus actually in the literature about the nomenclature regarding zero-state detectability.
Hence, in [5], Definition 2.8 corresponds to observability, and Definition 2.9 to zero-state detectability.

Theorem 2.2 [10] Consider a dynamical system H which is dissipative with respect to the triplet (Q, S, R)
and zero-detectable. Then, the system with zero input is Lyapunov stable if Q@ < 0 and asymptotically
stable if @ < 0.

Hence, passive and strictly-passive (USP) systems are stable while YSP and VSP systems are asymptot-
ically stable.

The same conclusions hold for weakly zero-detectable systems.

An important characteristic of passivity is that it is invariant under feedback connections [39, 41]. Hence,
a feedback system consisting of a passive dynamical system in both the feedforward and feedback loop
is itself passive and thus stable. Moreover, the sum of the stored energies in the forward loop and in the
feedback loop is a Lyapunov function for the closed loop system. Hence, the Lyapunov function used to
show passivity of the two system components may be used as part of the overall Lyapunov function used
to show the stability of the system. This procedure to show stability is formalized in [41].

We now state a simplified version of a very important theorem in the stabilization of passive systems,
the Passivity Theorem, which provides sufficient conditions to determine stability of the interconnection
of systems.

Theorem 2.3 Passivity Theorem [9]: The system formed by the negative feedback connection of a passive
dynamical system and of a strictly passive dynamical system with finite gain is Lq-stable.

Hence, any passive system can be rendered L,-stable by closing a strictly passive loop with finite gain.
I/0 stability infers internal state space asymptotic stability if the closed-loop system is stabilizable and
zero—state detectable (if these properties hold globally, the internal stability is also global). Hence, under
observability (zero-state detectability) and reachability conditions, the interconnection of a passive and
a finite gain strictly passive system is asymptotically stable [38, 41]. Also, it is sometimes possible to
show via a Lyapunov type argument that y(t) — 0 asymptotically if u(¢f) = 0. Then the zero-state
detectability alone guarantees internal asymptotic stability.

It is well known that passive linear systems are necessarily minimum phase and, conversely, a minimum
phase plant with relative degree zero or one can be rendered passive via a static state feedback (see (5]
for a particular form of this statement). A similar relationship for nonlinear systems has recently been
published in [5]. It is shown that a nonlinear system can be rendered passive via static feedback, i.e. it

5



is feedback equivalent to a passive feedback, if and only if the system is weakly minimum phase and the
relative degree is one (see Appendix B for the formal statement). An equivalent statement for this is
that the system is asymptotically stabilizable by state feedback [5]. Hence, the class of systems to which
stabilization by passivity approach applies can be extended by using this result.

3 Mddeling of flexible joinf manipulators

_The dynamical equation of motion for flexibly jointed manipulators with rigid links can be written as:

M(8)6 + C(8,0)8 + D(8) + (8) = Bu (3.1)

r(8) = g(8) + k(9) (3.2)

where 8 € R" is the displacement vector, u € R™ is the input force vector, M is the mass-inertia matrix,
D is the viscous damping and Coulomb friction, C corresponds to the centrifugal and Coriolis forces, g is
the gravity force, and k represents the spring coupling force. Note that in model (3.1), it is assumed that

no external force is exerted on the manipulator, and that joint and link friction is position independent.
We will consider maniﬂgulators with all its joints exhibiting flexibility and with each link being actuated,

ie.0=1|67 6,7 where 8y, 8,, € R™ are respectively the link and motor displacement vectors, and
n = (2-m). These assumptions are not essential but will allow to obtain a more concise presentation.

We define the output of interest as
y = h(0) (3.3)

Usually y is a function uniquely of the link state.

3.1 Properties of the system

We now state some properties of the system that will be useful in this paper.

o Te(m@d)]
C(8,6)6 2 { M(8,0) - 5 | =5

M is used to denote the derivative of M(#) along the solution;T.ev

. OM(9)
o I ¢ Y

M(6,6) 2
- =1

While C(8,6)8 is unique, C(0, 8) is not. However, there is a close relationship between C(6, 6) and M(6):
for any choice of C(6,8) and for any z € R",

: (%M(e. ) - C(8, z)> 220
Two frequently used representations for C' will be considered.

Representation of C using Christoffel’s symbols : In this representation, -

Zcijk(e)é,' '
=1

_ i_}_ [Bﬂfk]' OMy; 3M,—,} g.
= 5 ;

i=1 !

liv

ij

89,' c’)Hj 08

For this representation, and this representation only, (%M(G, z) - C(4, z)) is skew—symmetric [21].
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Representation of C' using Mp-notation : First define a matrix Mp that depends on two vector

arguments:
M ¢
Mp(6,v) & Z o e (3.5)
where e; is the i*? unit vector in R M b and M are related as follows:
Mp(8,v)w = M(8,w)v (3.6)
Mp also satisfies
ML (8, v)w = MA(8,w)v (3.7)
C(8,9) can be expressed succinctly as
C(8,6) & Mp(8,6) - %Mg(o,é) (3.8)

The Coriolis and centrifugal coefficient matrix C' will be represented by C to denote an arbitrary choice
of representation unless noted otherwise, by Cc to denote the representation by the Christoffel’s symbols,
and by Cp to denote the representation by the Mp-notation.

Also, it is always possible to find a vector function 7(#) such that r(8) can be factored as
r(8) = 7(8) + RO (3.9)

for any user defined constant matrix R € R™*". R will be represented as

Ry Ry
R = ’
[ Ry Ry ]

where Ri1, Ry2, Ro1, R22 € Rmx™,

We will also represent 7 as

_[ ]

(8= | r2(8) |

where 71,7, € R™*!, Similarly, ) )
_ v _ | T1(9)

0= no) ]

where 71,7, € R™*1.

The friction term D can also be represented by the sum of a linear component Dy and of a nonlinear

term D; as follows . . .
D(0) = Do + D1(8)

3.2 Structure of the model

It is well recognized that the control of flexible joint robots is highly dependent upon the structure of the
model, which depends on various factors including the kinematic arrangement of the links and the way
motors are mounted [7, 14, 20, 27, 35]. The following standard modeling assumptions have been used in
the literature [7, 20, 26, 27, 30] : '

e Linear spring assumption.



o Motor inertia is symmetric about motor axis of rotation (M and gravity forces only depend on 8¢).

¢ Kinetic energy of each motor is due mainly to its own rotation, or motion of motor is a pure rotation
with respect to an inertial frame (Neglect gyroscopic effects; Mz = M12 = 0).

None of these assumptions will be used a priori. However, we present here the structure of the model
that is obtained under some standard assumptions and for specific manipulator structures.

3.2.1 General model

For a general flexible joint manipulator, equation (3.1) can be expanded as [8, 20]:

My1(6,6m) Mi2(8e,8m) | | 6e +
Mf;(ol,om) M (6:) b

Cll(olagmyglr ) 012(6l10m7éla 'm) ' +
C21(9h0ma0€1 m) 622(9(,0",,0/, m)

Di(0:) r1(fe, m) _fo
D,:(éfn) } * [ r:(()j,am) J = [ I ] u (3.10)
r1(8e,0m) | _ [ ér (6, 6m) Nky(8¢,0,,) ' |
[ T;(aﬁvem) } B .g;(eze,em) ] * [ —kl(():,am) } (3.11)

where 8;,0,, € R™ are the link and motor displacement vectors respectively with elements numbered
from base to tip, link m being the last link; » € R™ is the input force vector; M, is the mass-inertia
matrix of the links including the mass of the motors mounted on the links as if they were rigidly attached
to the links; M, is the motor inertia matrix; M, represents the coupling or interaction matrix that gives
the dynamic coupling between the motor and link accelerations; MZE is the counterpart that gives the
interaction between the link and motor accelerations; D¢ and D,, are respectively the torques due to link
and motor viscous and Coulomb friction (the effect of friction in the transmission element is neglected);
C11 and Ci represent the coefficients of the torque acting on the link shafts due to centrifugal and
Coriolis forces; C'IT2 and C,, represent the coeflicients of the torque acting on the motor shafts due to
centrifugal and Coriolis forces; g, and g¢., are the gravity forces acting respectively upon the link and
motor shafts; k; represents the spring coupling forces; N is the matrix of gear ratios; and 0, [ € R™*™
are respectively the zero and the identity matrices.

3.2.2 M, nonsingular

This condition may arise when the stator of motor i, i = 1,---,m, is mounted on the link it drives
(rotor elastically coupled to link i — 1), or on a link higher in the chain, i.e. on a link 7, ji > ¢, for
certain kinematic configurations such as planar robots with the axis of rotation of the motors and links
all coplanar. The system is then represented by the same equations as the general model, i.e. (3 10,

3.11).
Subcase : Symmetric motor inertia

If the inertia of the motors is symmetric about thelr axis of rotation, then (3 10,3.11) become

Mu(ot) Mlz(oz) N 011(9&951' ) Cr2(8e,6¢) : +
ML(6)) My Hm Culbe,00) 0 9m

De(0) ri(8e,0m) | _ | O _
[ Dm(ém) } * { r2(€[_‘,9m) ] - [ I } u (3'12)
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r1(0e,0m) | _ | 9¢(6¢) Nky(62,0m)
{ rl(eﬁ,om)] - [ loe ] + [ -k:(gf,gm) ] (3.13)

3.2.3 M, strictly upper triangular

The matrix My may be singular but non-zero when the energy of at least one motor is due to its own
rotation. Also, a common configuration yielding this condition is when the stator of motor ¢ is mounted
on link ¢ — 1 while its rotor is elastically attached to link ¢ for i = 1,---, m (the stator of motor 1 is
mounted in the inertial frame). In a more general case, the stator of motor ¢ is mounted on link j; while
its rotor is elastically attached to link i for j; < ¢ and i = 1,---,m (This leads to My, = 0 if all the
motors are mounted in the inertial frame). It has been independently pointed out in [19] and [31] (the
former is for the exact case) that for that case, M, is strictly upper triangular.

We now present the structure of the model with symmetric motors for M, strictly upper triangular
where M, is state dependent or constant.

Subcase 1 : Symmetric motor inertia and M, strictly upper triangular

In this case, the system dynamics are described by (3.12, 3.13) with the Coriolis and centrifugal matrix
having the following structure:

CA(8e,60) + CB(6e,0m) C1(8e,6¢)

C(gla 0[, om) = Cﬂ(eb 0'3) 0

where C{l is the Coriolis and centrifugal term for the rigid robot and the structure of the other terms is
described below (see Appendix A for the complete set of equations).

It was pointed out in [31] that M;; has the following structure:

0 my2(0e1) mi13(Be1.0e2) -+ Mim(Ben,,0em-1)

0 ma,3(fe,2) <o mam(fe,2, 7, 0e,m-1)
Mia(6e) = : ' |
0 0 0 . 0

where m; ; are scalar functions. This particular structure for M), yields that (Appendix A)
o CE is skew-symmetric with row m equal to zero and row i independent of any é,,,‘j, j < i,
1= 1’...,m_ 1,
e C{, is strictly upper triangular,

e C4\ is strictly lower triangular.

Subcase 2 : Symmetric motor inertia, and M, constant and strictly upper triangular

Matrix M;, may be constant due to the configuration of the manipulator and due to the position (orien-
tation in particular) of the motors on the links. This is the case when the axis of rotation of each motor
is coplanar with the axis of rotation of the link that it drives, and that the axis of rotation of the links
are mutually perpendicular (possible for up to three links, unless some of the motors are mounted in the
inertial frame yielding weaker constraints and allowing for a larger number of links).

In this case, the system dynamics are described by

My (80) My || 6 + Cu(fe.02) 0] [ 6 + De(8e) +
ML My || n 0 0| bm Dn(0m)



r1(0¢, Om) 0
] - (2] o

[ r1(de,0m ) J _ [ge(f’z) ] + [ Ny (¢, 0m) } (3.15)

r‘Z(el’ gm) 0 —kl(gly 0771.)

where Cy; is the Coriolis and centrifugal term for the rigid robot.

L

3.2.4 1"[12 =0

There is no gyroscbpic coupling when the energy of each motor is due to its own rotation, e.g. the motors =
are mounted in an inertial frame, or all the motor axis are perpendicular to the link axis [20]. L
In this case, the dynamics of the system are described by =
u
M11(6¢,0m) 0 9( " Cll(elyemagf) C12(0€a0m,91) +
0 A’I22(9m) 021(06,077”96) C2‘2(0ma0 ) 0 =
De(6¢) (6, Om n
g 3.16
[ Din(bm) r2(02, bm v (316)
(8¢,0) (8¢, 0m) Nky(6e,05) -
T1(0¢, Um ge\ve,Um 19 Um
= 3.17

[ r2(02, Om) ] [ 9rm(Bt, ) } * [ —k3 (82, Om) } o G
a

Subcase : Symmetric motor inertia
If the inertia of the motors is symmetrlc about their axis of rotatlon (3.16,3.17) become %
Mi1(6e) O b + C11(6¢,6z) 0 b, n D(8:) + _
0 Mo Om 0 0 Om D, (0,) %

71(8¢,6m) _ 0

[ ra(6e. 6) = 7 v (3.18) =
=
71(0¢, 0m) 9¢(8e) Nk1(0¢, 0m) : — —
= 3.19 _
[ ra(6e, O 0 || —ki(6e,6m) (319) —
This model has the same structure as used by Spong [27] and many other researchers. -
. =

3.3 Notation and useful bounds
We define the position error and velocity error as %
. AH:B;Gd, Aé:é—éd B
-

and so on for hlgher denva.tlves

Also 9() denotes the z"‘ denvatxve of 9 zmd a function f € C'" if it is continuous and differentiable k =

times. Furthermore, the i* row of a matrix or the i** element of a vector will be noted by the subscript —

“ {" (without the comma for a matrix or vector without subscript), and a particular element of a matrix

will be denoted by its coordinates in parenthesis as a subscript. =
-

The following notation fof various bounds will be used later in this paper:

10
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= inf omin {M(6)) &y = Omin { R+ BK,B" }

Oy = Omin {Do + BKUBT} Y4 = sup Hf?d(t)“
Ydd = SUp ”éd(t)” =
>0
YDd = supz E 68201\4800) H Do = || Dol|
=1 j=
ve = sup |JA(2)|] Yed = SUP ”Aﬁ(t)”
20 20
yar = sup [M(O)] 1= R+ BE,B" |
7a = sup [V47(0)] 7 = | Do + BE, BT |

where K,, K, € R**™ are controller gains.

The following results will also be used in the paper.

Due to tl}.e positive definitiveness of the mass matrix M in (3.1), and of M;; and M»;, we can always
solve for §; and 6,, from (3.10). In (3.10), dropping the dependence on the state in the equation, define

P Cn Criz ée + D, + ™1
P2 Cyn Co2 Om D T2
Then, we have, for the general case,
i -1,T]7! -1
b = [Mi - MiaMj, ML) (MM (o2 —v) - o]
- -1
b = [My - MOMT Myp|” [MEME o1 - po+ u)

Also, the following relations hold:

e

Ca(8,8,802) Cp(8,8)8, - %Mgw,é)éd + %MD(H, 64)8
= SMp(6,6)0s - SME(0,6)0 + = Mp(8, 66
= 3Cp(8,0)hu+ 5Cp(6,04)6

Proof : Equation (3.23): direct substitution of (3.8) in (3.22).

Equation (3.24): add and subtract }Mg(ﬂ, 8)8, to (3.22), and use (3.7) and (3.8).

J & AT [CD(o, 820 + %MD(H,é)éd - %MD(B, 62)6 - %M(G,Q)Aé] =0

Proof : By direct substitution,

J = AT [MD(o,é)Aé - -;-A/Ig((},é)Aé + %MD((),é)éd -~ %z\lp(e,éd)é - -;-.’WD(G, Aé)é]

11

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)



Add and subtract %MD(O, 0)6 to this equation and use the linearity property of Mp in its second argument
to obtain

J = adT [MD(o,é)Aé-%Mg(e,é)aé-%Mp(e,é)aé]
= AT BMD(H,é)Aé - %ME(G,@)A@]
= 0

due to the skew-symmetry of the term in brackets. o .

1M (62) = M(0)I| < 7o (|28 (3.26)

Proof : yp corresponds to the supremum of the norm of the gradient of M, leading directly to this

identity. ]

I, 8 “C’D(G, )6 + %MD(O,é)éd — %MD(o,éd)é - M(f),éjaé” ggm |ad|’ +5;-7D |6 | 6] 3.27)
Proof : Add and subtract 1Mp(8,6)d (insicie the norm operation) and use (3.6) to write
J. = % | M0(6, 626 - ME(8,6)26 - Mp(8, 263
o oo ]l g | ot 50 |
and use (3.5) to write

5 < quld] o]

2
= goad+ad] Jad]
< srofad] + 5o fdd] 4]
* which concludes the proof. =
Jestniol < ool + o6 o] o9
Proof : Use (3.23) to write
[Ca.8.80] < 5 |Mo(6,0)0d] + 5 |MB(©.008a] + 5 | M@, 605
3 g
< 5 [o] 4]
which leads to the conclusion by using ”0” < ”9,1 “ + "Aeu ]
l%MD(B,é)éd - %j\fp(ﬁ,éd)éu < 7o ||64] || 26] (3.29)

12
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Proof : Add and subtract %AID(G,éd)éd (inside the norm operation) to write

vo 6] |24]

which ends the proof. »

. . .. 1 .. 1 . .
”-;-MD(H, 6)8y — %MD(G,Bd)H 5 Mp(6, 80)d4 ~ 5 Mp(6, Od)AOH

IA

o & [Co0er b0 - Ca(0,6,00] < Troa | 1800 + 2o o] | 4] (3.0)
Proof : Use (3.22) to write

L. o .1 L
In = |Col6a.800: ~ (8,8 + 3 Mb(6,6)6 - 5MD(.c),evd)eU

Add and subtract Cp(8,84)4 and %Mg(ﬁ,éd)éd (inside the norm operation) to obtain

.. .. .. 1 . 1 . .
T = |[Co(04,60)6 — C(8,64)8s - C(6, 86)ds + 5 Mp(8,56)6; - 5MD((;,od)MH
. . .. ., 1 . 1 . .
< || Co(6u,00)6s = C (6, 62)6a + ”—cp(o, A6)0s + 5 Mp(8, Ab)ds ~ §114,3(0,.94)139“
< | M (84, 6)0s = Mp(6,62)8a) + 5 | MB(64, 620 - ME(9,60)04) +
—%MD(G, Ay + %Mg(o, N %NID(H,O'd)AB"I
3 - 112 3 . .
< groe|da] naon+ oo ol ad]

Where we have used the definition of Mp (3.5), and in particular, the supremum of the bound of the
gradient of Mp with respect to  to obtain the bound in 7pq4. .

For C represented using the Christoffel’s symbols, the relations listed below hold.
There exists a unique and finite real constant y¢ that satisfies, for any  and any finite w,
ICc (8, w)ll < veljwl] (3.31)

Proof : The evaluation of this bound, and in particular of a tight bound 7c is not straightforward and
is not provided here. "

There exists some constant vc4 so that
[Co(6a,6) - Cot8.8)] < vealiagli 6] (3.32)

Proof : This bound is a function of the supremum of the norm of the gradient of C¢ but is difficult to
find analytically so that no proof is provided. .

Also, there exists some constant y¢, so that

Hcc(a,é)aé - M(e,é)Aé" < e, A9“2 + 76 ]éd” "Aé” (3.33)

Proof : We may write

IA

lcc(s,6)a6 - M (8,0)24| ”cc(a,é)z_\.én + ‘M(@,é)Aé"
ve |ad] 6] + a0 24] |¢]

(v¢e + 7D) (“Aé ‘2 + Héd” ”AOID
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where we have used (3.4) and (3.31). We obtain the desired conclusion by choosing v¢, = v¢ +vp, which
gives a loose evaluation of the bound. .

|Cc(64,60) = Cc(8,0)] < 7ea || 28] |be] + e |26 (3.34)
Proof : We may write

”C’c(od,éd) - Cc(@,é)” ”Cc(ﬁd,éd) - Cc(e,éd) - Cc(e,Aé)”

< |[Colbe,b) - Co(8,0a)] + | Cote, 20)]
< cdllAd] ”9«1“ +7c ”AGH
where (3.32) has been used in the last step. .
Finally,
I7(8) - 7(6a)ll < 7r(IA6] (3.35)

Proof : yr corresponds to the supremum of the norm of the gradient of 7, leading directly to this

identity. =

4 Controller design approach

‘The synthesis of the material presented in Section 2 leads to a control design approach based on passivity

for a large class of systems. Assuming that we can form an error system and render the error system
passive by static feedback, we can then L,-stabilize the error system by using any finite gain strictly
passive controller. Then, if furthermore the error system with static feedback is at least weakly zero—state

detectable, then internal asymptotic stability is also guaranteed. -

Flexible joint manipulators are members of the class of systems to which such an approach can be
applied since such systems are feedback equivalent to passive systems for a proper choice of outputs, and
in particular for any arm configuration if the motor velocities are used as outputs as shown in Appendix

B.

Problem statement Consider the dynamical equation of the system (3.1,3.2) rewritten here for com-

pleteness:

M(8)8 + C(8,6)0 + D(8) + r(8) = Bu
r(8) = g(8) + k(8)

B = [ Omxm Imxm ]T

Find u so that the output of interest y = h(f¢) — y4 asymptotically.

We now present a design procedure that involves essentially two steps defining the basic structure of
the controller, i.e. (i) define a model-based feedforward in order to form an error system; (ii) add a
model-independent stabilizing feedback to the feedforward.

1. Feedforward Design: Decompose the control input as

U= U, + ug
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Figure 1: Structure of the proposed controller

where ug is the feedforward input and u, the stabilizing input. The feedforward is chosen such that
the output of interest y tracks the desired trajectory under matched initial conditions. The choice
of feedforward must also allow to form an error system that is passive or can be rendered passive
between a particular input/output pair (u;, y,) via static feedback from some output y, (Fig. 1).
The results presented in [5] can be used to guide the choice of the output y, (Appendix B).

2. Feedback Stabilization: Find a static feedback (inner loop Cp) to obtain passivity and zero-state
detectability for the pair (u;, 9,). Then choose a finite gain strictly passive feedback (outer loop Cy)
between the passive input/output pair. By the Passivity Theorem [9], this guarantees La-stability
of the system from u; to y,. Use an energy based Lyapunov analysis to show that output y, — 0
asymptotically. From zero-state detectability, the zero error state is also asymptotically stable, and .
the output of interest y — yq asymptotically.

NOTE : Three outputs are defined in the design procedure. In the case of flexible joint robots, the
output of interest y is generally defined in terms of 8, while 0 (or Ab,,) has been used as the passive
output y,, and 8,, (or Ab,,) has been used as y, in [16, 24] to render the system zero-state detectable
from u; to y,.

NOTE : Weak zero-state detectability is also sufficient to guarantee asymptotic stability given y, — 0
asymptotically.

This approach has interesting features, namely :
e C, can be any BIBO strictly passive feedback and can be tuned for performance enhancement.

Note that BIBO stability is implied by strict passivity for finite dimensional linear time invariant
systems.

e Only y, and y, are needed for stabilization, i.e. only motor position and velocity for flexible joint
robots.

e Error in the feedforward does not cause instability, i.e. small errors in the feedforward only lead to
a weaker form of stability (see Section 8).

e Applicable to both position set point stabilization [16] and tracking control.

The design approach offers a certain degree of flexibility in the sense that certain choices must be made.
In particular, different forms of feedforward can be used yielding different characteristics regarding their
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solution (solubility, required model information, required signal measurements, complexity) (Section 5),
and the type of stability and tracking accuracy that are obtained (Section 8). Another choice that has to
be made is which controller in the class of strictly passive controllers should be used in order to obtain
the desired performance. Among this class of controllers, we will use the classical PD (Proportional-

Derivative) controller to carry out the design in Section 6.

In the following section, we present various possible forms of feedforward for the trajectory tracking
problem and address the issue of solving the feedforward. We then carry out the controller design in Sec-
tion 6 for particular choices of feedforward under the assumption that the condition of (weak) zero-state
detectability is met, assumption that is verified in Section 7. The design approach guarantees asymptotic
stability only if all the design conditions are met, which is strongly dependent on the feedforward signal
that is used. A Lyapunov stability analysis is carried out in Section 8 to analyze the stability of different
forms of feedforward, in particular approximations of the feedforward based on the inverse plant.

5 Feedforward: selection and solution

In this section, we present a series of possible forms of feedforward for the problem of trajectory tracking
and address the issue of solving for the feedforward. In particular, conditions for solubility including
required measurement and modeling information are stated.

5.1 Selection of feedforward

Assume that, given yg = h(f¢,), we can solve for 6. There are many possible feedforward compensation
based on the inverse dynamics of the system (FF1 below) and its approximations that can be used, e.g.

FF1. Bug = M(64)8, + C(ed,éd)éd + D(84) + r(82)

FF2. Bug = M(84)84 + C(64,04)84 + D(8a) + 7(8) + Rby

FF3. Bug = M(8)84 + C(8,8)4 + D(8.) + r(84)

FF4. Bug = M(8)f4 + C(8,6)02 + D(8a) + 7(8) + Rba

FF5. Bug = M(8)0,+ Cp(6,8)6 — 1Mp(8,6)0, + 1Mp(8,64)8 + D(6a) + 7(6a)
FF6. Bug = M(0)d; + Cp(8,8)8s — 1 Mp(8,8)81 + $Mp(6,62)8 + D(64) + 7(8) + Rb.
FF7. Bug = r(64)

FF8. Bug = (0) + Ré,

Note that feedforward FF7 is the same as used for the set point control, e.g. [16, 31].

There are multiple considerations in the choice of feedforward, namely, the measurements and model
information required to solve for the feedforward and for its implementation, the complexity of the
solution, and the performance it allows to obtain regarding stability and tracking. We now analyze the
solution of the different forms of feedforward and will analyze their performance in Section 8.

The solution of the feedforward is a stable inversion problem. We will use a procedure for the solution
that involves essentially three steps defined as follows

1. From the last m equations of the feedforward equation (FF1-FF8), define what signals are required
to compute the feedforward.
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2. Given the desired output (6¢, and its higher derivatives, i.e. link reference trajectory provided by
the user) and the signals available by measurement, determine the desired internal state (6m, and
its higher derivatives as required by the feedforward, i.e. desired motor reference trajectory) by
using the first m equations of the feedforward, and possibly additional information such as the
original system equation. The result that we are seeking at this step is a causal and bounded
desired internal state yielding a bounded feedforward signal provided that the desired output state
is also bounded, i.e. it should be a stable and causal solution.

3. Evaluate the feedforward.

Proposition 5.1 Consider the properties of the system (Section 3.1) and assume that D(z) and r(y)
are bounded functions of their argument. Then, if the desired trajectory (84 and its higher derivatives) is
bounded, ug is bounded in

e FF1 and FF7,
o FF2 and FF8 if the following assumption is satisfied

Assumption 5.1 ||Ad|| is uniformly bounded in time by a finite constant 7.

FF3 and FF5 if the following assumption is satisfied

Assumption 5.2 "AG“ is uniformly bounded in time by a finite constant v.q.

o FF4 and FF6 if both Assumption 5.1 and 5.2 are satisfied.

Proof : Consider FF4 with C represented using the Mp-notation. Premultiply the equation of FF4 by
BT and use (3.9) to obtain

ug = BT [M(8)du+ Cp(6,6)ds+ D(6a) + r(8) - RAS)
lugl < || B7] (132000 |éa] + |Co(6.0)] 6] + [ 6] + Iri)] + 1R IG1]
< |87 :“w 4] + 570 6] 6] + | D] +lir(20 + 82311 + URI ||A0u]
< |&| 7 |64 + gm léa] + gm | 28] 6] + | ptdo| + lir(a6 + 6] + 1R uaen]

which leads to the conclusion of the proposition since BT“ and || R|| are also bounded. The same proce-
dure is used for the other forms of feedforward and for the C matrix represented using the Christoffel’s
symbols. n

The following assumptions will be particularly useful for the solution of the feedforward:

Assumption 5.3 r; is continuous and differentiable, and the gradient of r1(8¢, 0mm) with respect to 8,
Vo, 71(0¢,,0m), is invertible in some open set in 0.

Assumption 5.4 D(0) is continuously differentiable as many times as this function needs to be differ-
entiated to solve for the feedforward.

We will also assume that the reference output trajectory is bounded.

17



5.2 Solution of FF1

Expand FF1 to obtain, for the general model,

0 = M11(0(d,9md)§gd+1\fl?(0(d,9md)émd+Cu(0¢d,0md,égd,émd)égd+

012(01,“ gmdv éldv émd)éma + Df(éld) + Tl(efd? gmd) (5‘1)
ug = A/Ilj;(eld’ e.md)g.[d + M22(0"md)0md + C21(934>9m4’ 0347 omd)eld +
022(0771..,» omd)amd + Dm(gmd) + 7'2(9&1’0"14) (5'2)

To obtain a closed loop form for the feedforward control input ug from (5.2) for (,,, 0, 4 6, ,) given , we
must first define (Emd,ﬁmd, ﬂmd)

The problem of solvmg for (Om,, Om o Om ,) resumes to solving (5.1) for these variables given the input A y
and &,,, fe,. ,- This problem may have multiple solutions as in the case where M;, is nonsingular. In that
particular case, the user is free of choosing the initial values for 6, d,9m 4 An important characteristic
that is desired for the solution is its stability in the sense that the desired motor state should stabilize
in order to obtain internal stability not only of the error state, but also of the actual state. This allows,
among others, to reduce the stress on the equipment.

Zero-state detectability or weakly zero—state detectability properties of (5.1), with y = (834,0}4,@}4)
and z = (‘9md’9mav md) in Definitions 2.8 and 2.9, allows to characterize partially the solution for

(OmysOmy» Om,) either locally or globally.

Fact 5.1 Zero-state detectability of (5.1) constitutes a necessary condition for uniqueness of the solution
Jor (Bmyy0myy Omy)-

Fact 5.2 Weak zero-state detectability of (5.1) constitutes a necessary condition for the solutions for
(Omyy Omys Omy) to be asymptotically stable.

A more global condition is obtained if we require that 8, constant implies 8, = f. (zero-state de-
tectability of any shifted state), or implies (8, ,0m,, md) — (6.,0,0) (weak zero-state detectability of
any shifted state), where . € R™ is constant and uniquely defined for each .

Example 5.1 One case for which (5.1) is zero-state detectable and FF1 has a unique solution is the
following. First, assume that the inertia of the motors is symmetric about their axis of rotation, and that
M, is strictly upper triangular (Section 3.2.3). Also assume that the :** element of r'(8,8,,) depends
only on (6¢;,8m ;). Under these assumptions, expand FF1 to obtain

0 = Mll(efd)éld + A’Il?(eed)émd + C{ll(gfd7é£d)6.£d + Cﬁ(gfd'émd)éfd + Cfiz(eld’ét’d )émd +
De(8e,) + m1(0e450my) (5.3)
ug = M12(954)0f4 + ‘[220'"1:1 + C w’d gfd)gfd + Dm(gmd) + ’2(0’dv md) (5.4)

Also suppose that Assumption 5.3 holds. This implies that, by the Implicit Function Theorem [3], there
exists a locally unique solution #p, to (5.3) for any given Omd, mgq» and ¢, and its higher derivatives.
However, 6,,, and §,,, are not known a priori.

In order to solve for f,,, and its derivatives, we take advantage of the fact that My, and Cw are strictly
upper triangular and that row i of CB does not depend on any fm; for j <iandi=1,---,m. This
allows to solve 1terat1vely for the elements of O, from its m*h element to the first.

Given 6, and its higher derivatives, use the last row of (5.3) to solve algebraically for Omym. Then
suppose that Assumption 5.4 holds and evaluate 9md m and Omd =~ by taking the time derivative of 8, m.

Now, given Hmd m and Bmd m, use the second last row of (5.3) to solve algebraically for 6, m-1, and
continue the process down to 8,,1. Note that the desired trajectory has to be very smooth since the
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solution of the last term of the iteration, i.e. émd‘l, requires 6,2;;.“), i = 1, m, and that the characteristic

of the equivalent spring of joint i be differentiable 27 times in both its arguments for ¢ = 1, m.

Noting that all the coefficients of the equations use to solve for the feedforward are bounded, we conclude
that the desired internal state is bounded given a bounded desired output trajectory.

We then obtain the feedforward input by substituting the variables in (5.4).

Hence, the solution of ug for this case requires invertibility (at least local) of r; and of V"wrl along
with knowledge of the full model, a very smooth input trajectory and differentiability to a high order of
r,. However, no measurements are required. a

5.3 Solution of FF2

Expand FF2 to obtain, for the general model,

0 = Mi(Bey0m,)0e, + Mi2(8e4,0my)0my + C11(Be,, Omys Beyr m,)0e, +
C12(8ey+0my» 0e410my)0my + De(Be,) + 71(82,6m) + R118e, + R126m, (5.5)
ug = Aljli;(efdvemd)éfd + A{22(6md)émd + 021(0547 gmd’é£d7émd)éed +
C22(0mys 8my)0my + Dim(Omy) + T2(6e,0m) + R216e, + R220m, (5.6)

To obtain a closed loop form for the feedforward control input ug from (5.6) for (Ogd,égd,égd) given, we
must first define (m,, Omy, Omy)-

The problem of solving for (0m,, O 4»0m,) is very similar to the one encountered with FF1 except that
(5.5) depends on the actual state (8¢, 8,,). Hence, the feedforward and the control input are intertwined.
This renders the task of characterizing the solutions more difficult: we must know the controller in order
to ascertain stability of the feedforward input. However, we may assume that the closed loop system is
stable and that the error signals are bounded in order to pursue the analysis.

Example 5.2 Consider Example 5.1 with the additional assumption that R,z is chosen nonsingular and
upper triangular (or diagonal). Expanding FF2, we obtain
0 = Mll(ofd)éfd + AJI?(&Q )émd + Cﬁ(gfd’éfd)éfd + Cﬁ(ged’émd)éfd + ClAz(et’d’ éed)émd +
Di(fe,) + 71(82,6m) + Ru16e, + Rizbm, (5.7)
ug = ME(0,,)6e, + Magbm, + C5\(80,,00,)80, + Dim(6my) + 72(6¢,6m) + R218e, + Ro2brm, (5.8)
In order to solve for 8,,,, and its derivatives, we take advantage of the structure of M4, C'IBI, C'IAQ and R,

to solve iteratively for the elements of 8,,, from its m** element to the first.

Given 6, and its higher derivatives, and assuming that 8, and 8, are available for measurement, use the
last row of (5.7) to solve algebraically for the m** element of 8,

gmd,m = "RIZ,(m,m)_1 [f‘flll,m(et’d)éfd + CiAl'm(ng,égd )éfd+
D(’,m(él_’d) + Fl.m(gﬂ,m- gm,m) + Rll,(m,m)gfd,m] (59)

We solve for 9md’m by taking the first time derivative of (5.9) under the assumption that ég and ,, are
available for measurement and that Assumption 5.4 holds. Now, taking the second time derivative of
(5.9) in order to find 6, m, we obtain, for X' properly defined:
. . d? . .
bnim = =iz gmm™ 75 [Mim(8)e, + Ot om0y, 8000, +
Dlj,m(é[’d) + ‘Fl,rn(et'.ma Gm,m) + Rll,(m‘m)ol’dym]

= X (0641 951,, b, 9%, 98), Bt.m s Bt.ms O ms ém,m)

g

_Rl2,(m.m)—1 [VG[,m ’-‘l,m( glf.m» Hm,m )él".m + vgm_,n Fl,m(gl_’,m . gm,m,)ém,m]
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Since 8, and #,, are usually not available for measurement, we want to remove the dependence on these
variables. For this, we use the dynamical equations of the system (3.20, 3.21). However, due to the
gyroscopic couplings, ém,m may depend directly on all the inputs, i.e. in general we must know all the
feedforward inputs in order to solve for this signal. We conclude that, in general, this approach does not
lead to a practical closed loop form for the solution in this case. o

NOTE : Under the additional assumption that M;, is constant in the previous example, the same
problems are encountered in the solution of the feedforward.

Example 5.3 Continue the previous example (Example 5.2) with the assumption that there is no gyro-
scopic coupling, i.e. M, = 0 (Section 3.2.4). Expanding FF2, we obtain '

Mu(gld)éld + Cll(efuéfd)éld + Df(éfd) + 71(0¢,6m) + R1102, + R120m, (5.10)
M, + Dm(omd) + F2(9h 0m)+ Ra1e, + R220md (5.11)

0

ug
Given 8, and its higher derivatives, that R,z is nonsingular but otherwise arbitrary, and assuming that
6; and 0, are available for measurement, we have, from (5.10),

Om, = —Ri127! {]Wu(gzd)éfd + Cll(oed,éed)éld + Df(éed) + 71(0e, 0m) + Rneid] (5.12)

and 0,,, is bounded if Assumption 5.1 is satisfied.

We solve for émd by taking the first time derivative of (5.12) under the assumption that 6, and 6,, are
available for measurement and that Assumption 5.4 holds. Now, taking the second time derivative of
(5.12) in order to find 6, we obtain, for X properly defined:

d2 . .. .
= -Rip'75 [Mn(ﬁed)oed + C11(8e,,0¢,)8e, + De(8e,) + 71(0¢,0m) + R1193d]

bms = dt?
= X (gfdyéldaélcu023)19§:)393aéf’0m7ém)
—Ri2™ [Vo,71(60, 6m)e + Vo, 71(66, 6 )i (5.13)

We now use the dynamical equation of the system to write 8, and 0, as a function of know signals. From
(3.20, 3.21),

b = M8 [Cua(Be,60)8c + De(8e) + a(6e,6)] (5.14)
b = —M3z' [Dn(bm) + ra(6e,6m)| + M3 (5.15)
Substitute (5.14,5.15) in (5.13) to obtain, for A3 ﬁroperly defined,
Gmg = X2 (Byr000, 800005, 051 86,60, 0, ) = Ruz ™" Vo Ta(6e, 6m) M5! w (5.16)
which is bounded if Asrsruirilptiijgnsr 5.1 and 5.2 are satisfied and if A# remains bounded.
Use (5.11) and (5.16) to write |
ug = [Dm(émd) + 72(0e, 0m) + R216e, + R220md] +
Mz { Xy (92,1000, 00,, 063 051, 86,06, 6rm, 6 ) = Ra2™ Vo F1(80, 6 ) Mz [(w = ugr) + ug!}

-1 .
Mo [I + R12—IVme1(9g,0m)] {M{zl [Dm(emdr)r“k fz(of,em) + Ro10e, + R229md] +
[XZ (9547 éfds éfdv 0g3)~ 91(3:)’ efy g.fa Omw gm) - R12—1v9m 7-‘1(657 om)-{‘/[2—21 (u —ug )] }

where the term (u — ug) represents the contribution of the stabilizing controller, and under the assump-
tion that [I+R12'1V9mf1(95,0m)] is invertible for all (6,6,,), which is always possible by a proper

choice of R3.
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Hence, the solution of ug for this case requires invertibility of R;; and of [I + R127 Ve, 71(6e, Bm)] along
with knowledge of the full model, measurement of the full state, differentiability of r; twice in both its
arguments, and knowledge of the stabilizing controller signal. This last requirement also means that the
feedforward and the feedback are intertwined. a

5.4 Solution of FF3

Expand FF3 to obtain, for the general model,

0 = Mi1(82,60)02, + My2(80,0:)0m, + Cr1(6e, 0m, Be, 0m )02, + C12(8e,6m, 8¢,0m)0m, +

De(Be,) + 18245 0m,) (5.17)
Ug = M1T2(.0[, Om)egd + M22(0m)gmd + CZ](OZ; 9m, 981 9m)924 + 022(977“ om)omd +
Din(0m,) + 72(8ey,0m,) (5.18)

To obtain a closed loop form for the feedforward control input ug from (5.18) for (8e,, 8¢, 0, ;) given , we
must first define (Om,,0my, Omy)-

The problem of solving for (6 d,ém d,ém ) Is very similar to the one encountered with FF1 except that
(5.17) depends on the actual state (8¢, 8¢,0m,6:). Hence, the feedforward and the control input are
intertwined. This renders the task of characterizing the solutions more difficult as noted in the discussion
on the solution of FF2 (Section 5.3).

If we try to find the closed loop solution under the same assumptions as in Example 5.2, in particular
M2 strictly upper triangular, we encounter the same problems as with FF2. We will thus consider the
system in Example 5.3 to demonstrate the solution of this feedforward.

Example 5.4 Assume that the inertia of the motors is symmetric about their axis of rotation, and that
Mj; = 0 (Section 3.2.4). Also assume that the ith element of r1(8,,8,,) depends only on (8¢,;,60m,:).
Under these assumptions, expand FF3 to obtain

0
ug

Mi1(60)8e, + Cr1(Be,00)8e, + De(6e,) + 71(6e,,8m,) (5.19)
M2Bm, + D(fmy) + 72(804, 0my) (5.20)

i

Also suppose that Assumption 5.3 holds. This implies that, by the Implicit Function Theorem (3], there
exists a locally unique solution 8,,, to (5.19) for any given 8¢, 8¢, 8¢, and 6s,.

To solve for émd and émd, assume that ry is diﬂ'erentiable twice in both its arguments and that Assumption
5.4 holds. Take the first time derivative of (5.19) to obtain:

0 = M8, 0e)be, + Mir(6e,80)85) + Cr1(8e,6e,80)0¢, + Cr1(62, 8¢, 62)8:, +
De(Bey,8e,) + Vo, 11(814,0m )00, + Vo, 11(8e4s bm g ), (5.21)

We then solve for 8 by using the system equations in order to remove dependence of the feedforward on
this variable (see (3.20)):

e = M1 (8e)7 [011(92,(;:2)96 + De(8e) + T1(9e,0m)] (5.22)
By substituting (5.22) into (5.21), we may write
0 = X(0r,0e,0m,00,,00,,00,,60,0m,) + Vo, 11(8t4,0m,)0m, (5.23)

such that we may solve for émd by Assumptions 5.3 and 5.4 provided that #,, has been previously
evaluated and that 8, 8; and @,, are available by measurement.
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We proceed similarly to evaluate f,m, by taking the first time derivative of (5.23), removing the dependence
on §; by use of (5.22), and by assuming that O 4 has been previously evaluated and that 6, is also available
by measurement. We note that the fourth time derivative of ,, is required.

The internal state remains bounded if Assumptions 5.1 and 5.2 are satisfied.
We then obtain the feedforward input by substituting the variables into (5.20).

Hence, solution of ug requires invertibility (at least local) of 7y, that r; is twice differentiable in both its
arguments, along with knowledge of the full model and full state measurement. a

5.5 Solution of FF4

Expand FF4 to obtain, for the gene'ral mo&el,
0 = Mll(ela em)é[d + A/II'Z(Glsgm)émd + Cll(glagmaéla ém)éfd +CIZ(BC70m1élaém)émd +

De(62,) + 71(8e,0m) + Ru18e, + R12bm, (5.24)
ug = Mlg(?fagm)eld + ]\/122(9"1)0771,1 + C?l(gfaemvghom)efd + 022(0111, gm)emd +
Dpn(0my) + 72(0¢,0m) + R218¢, + B2, (5.25)

To obtain a closed loop form for the feedforward control input ug from (5.25) for (8,,, 0¢d, 6,,) given, we
must first define (0, Om,, md)

The problem of solving for (6, d,om & 0m 4) is very similar to the one encountered with FF2 except that
(5.5) depends on the actual state (8¢,8¢,0m,6m)-

Examfﬂe 5.5 Consider the system used in Example 5.3. Expand FF4 to obtain

0 = Mu1(80)8e, + C11(6¢,80)0e, + De(6e,) + 71(82,0m) + R116e, + R120m, (5.26)
ug = Mybm, + Din(bm,) + 72(0e,0m) + Ranbe, + Ra2Om, (5.27)

Given 8, and its higher derivatives, that R, is nonsingular but otherwise arbitrary, and assuming that
e, 6, and 6,, are available for measurement, we have, from (5.26),

mg = —Ri™! [Mu(f?z)@e., + C11(8e,60)0¢, + De(Be,) + 71(Be,0m) + Rn@zd} (5.28)

Suppose that Assumption 5.4 is satisfied. We solve for émd by taking the first time derivative of (5.28)
under the assumption that f,, is available for measurement, and by removing the dependence of this
equation on ; by using the system equations as done in Example 5.4. Now, taking the second time

derivative of (5.28) in order to find Opm 4» and substituting b, 9( ) by functions of measurable state only,
we may write, for X’ properly defined:

, d°
dt?
= X (B, B, 077 647 82, 6,6, )

~R12™" [Va,F1(8, 0m)8e + Vo, 71(8e, 6 )]

by = —Rux™ 3 [M1a(80f0, + C11(6e, 6001, + DeBe,) + F1(0e,6) + RurBe,

d

i.e. 5ma is of the same form as in (5.13) so that we pursue the solution as in Example 5.3, and the
same conditions for solubility are obtained as for FF2. Furthermore, the signals remain bounded if
Assumptions 5.1 and 5.2 are satisfied. o

5.6 Solution of FF5, FF6

The solution of FF5 and FF6 are respectively very similar to those of FF3 and FF4 such that the
reader is referred to Sections 5.4 and 5.5 for information about their solution.
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5.7 Solution of FF7

Expand FF7 to obtain

0 = r1(6ey,0m,) (5.29)
ug r2(0e4)Om,) (5.30)

]

To compute the feedforward control input ug from (5.30) for a given 8,,, m, must first be defined.

Suppose that Assumption 5.3 holds. Then by the Implicit Function Theorem [3], there exists a locally
unique solution 8,,, to (5.29). The solution can then be substituted in (5.30) to obtain ug.

Hence, solution of ug requires invertibility (at least local) of Vg, 71(f¢,6m) along with knowledge of r,
i.e. gravity load and spring characteristics. No other restrictions are imposed on the system and no
measurements are required.

If higher order derivatives of 6,,, are required for the controller, we may proceed as follows. In order to
obtain the i** derivative of 6, , further assume that r; is differentiable 7 times in both its arguments, and
that all higher derivatives of 8, up to the i** are available. Take the first time derivative of (5.29) to get

Vo, 71(0eg)0ma )0y + Vo, 10ty Om, )0m, (5.31)
. -1 .
01114 - [Vemd rl(ald? Hmd)] i Vegd rl(efd’ omd)old

0

given that 6., has been previously evaluated.

Taking the time derivative of (5.31), and given that 8,,, and bm , have been previously solved, Orm 4 I8
found in the same fashion. Hence, we can solve iteratively for the higher derivatives, and boundedness
of the signals is guaranteed for any bounded desired output trajectory.

Example 5.6 A common case for which we can solve for the feedforward is as follows. Assume that the
inertia of the motors is symmetric about their axis of rotation (Section 3.2.2), and that k; is defined as
follows

iNiei"gmi = ..
(k])u(oz,am) = { g( £ ) ;#; l,] - 1’...,11, - (5‘32)

where N; and f; are respectively the gear ratio and the elasticity characteristic of the :th joint. If all

the f;’s are monotonically increasing, continuous, differentiable, and their range is R, then k; is globally
invertible. '

Equations (5.29, 5.30) may be written as

0
ug

9e(82,) + Nk1(8eg,0m,) ' (5.33)
—ky (82, 0m,) (5.34)

and a unique solution, 8, to (5.33) can be found for any 6, and is given by
bmy = Nby, — k7' (=N ""ge(6e,)) (5.35)
We obtain ug by substituting (5.35) into (5.34) which gives, after simplification:

ug = N—lgf(ofd)
a

Note that for the previous example without the motor symmetry assumption, a local result may be
obtained under proper assumptions.

23



5.8 Solution of FF8

Expand FF8 to obtain
0 71(8¢,0m) + R110¢, + R120m, (5.36)
ug = T2(0¢,0m) + Rnfe, + Rozbm, (5.37)

To compute the feedforward control input ug from (5.37) for a given f,,, we assume that 8¢ and 6, are
avaﬂable for mea.surement and the reference posxtxon fm, must be defined.

i

Assume tha.t R is chﬁéen thh Ri2 nonsmgular ‘we obta,m Bmd from (5 36)
) ] 0 ?7—}212 } [T](G(, m) + Rlleld] ) B (538)
We obtain ug by substxtutmg (5. 38) into (5.37):

ug = T2(0e,0m) + R21be, — RaaRi27! [F1(0e,0m) + R110e,]
ug = F2(0e,0m) — RazRi2 ™ '71(0e,0m) + [RQI - R22R12_1311] be, (5.39)

and all the signals are bounded if Assumption 5.1 is satisfied.

We see from (5.39) that if R is singular, then 8, does not affect ug directly in certain directions. However,
there seems to be no reasons at this point to restrict R to be nonsingular.

Hence, solution of ug requires invertibility of R;2, which is achieved by proper design, exact knowledge of
r,i.e. gravity load and spring characteristics and measurement of motor and link position. Also, solution
of the feedforward imposes no restriction on the structure of the system and on the system parameter

values.
However, the controller may require higher order derivatives of #,,, in particular Om , to implement a

PD motor loop. Given 8, §m, is obtained by taking the time derivative of (5.38) assuming that 7, is
differentiable in both 8 and 8,, and that measurement of motor and link velocity are available:

by = ~Rui2™" (Var1(80,6m)d + Rurb,)

where V,7y(z) is the gradient of 7; with respect to z. Note that the condition of differentiability of
7, implies a similar condition on ry, i.e. on the spring characteristic itself. For boundedness of 8, o

Assumption 5.2 is required.

6 Controller design for tracking

In this section, we carry out the controller design, i.e. error system stabilization, for the error system
formed by using using FF4 and FF6 defined in Section 5.1 in order to demonstrate the application of
the procedure established in Section 4 and to present some stability results and design requirements. We
recall that the procedure allows to ascertain asymptotic stability for the system by using any controller in
the class of strictly passive and BIBO stable controllers if we can show that y, — 0 and if the zero-state

detectability condition is met.

6.1 Stabilization of error syste'n';forfhed by FF4

For FF4 with C représéhted using Christoffel’s symbols (Section 3.1), define

u=u,+ ug
to obtain the following error equation for the system :
M(8)A8 + Cc(8,6)A8 + D(6) - D(84) + RAS = Bu, (6.1)
24
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8.1.1 Static feedback

In Appendix B (Section B.2), we show that the use of the motor position as part of the output may allow
to obtain stable zero dynamics for flexible joint robots, implying at least weak zero—state detectability,
and also to render the system passive if, for example, the motor velocity is also part of the output (see
case 1 of Section B.2). This motivates the following design.

Consider a static feedback of the motor error state (Cp(yp) = K,BT A8):
u, = uy — K,BTA8
The closed loop error equation becomes:

M(8)A8 + Co(6,8)88 + D(8) - D(da) + [R + BK,BT| A8 = Bu, (6.2)

Proposition 6.1 The pair (u;, BTAé) is a passive pair for the error system if the two following assump-
tions are satisfied:

Assumption 6.1 R and K, are chosen such that [R + BK,,BT] > 0.

Assumption 6.2 There is no negative damping in the system.

Proof : In order to show passivity, consider the following energy function based on the total energy of
the error system

V= %AOT R+ BK,BT] 20 + %AéTM(G)Aé (6.3)
Using (6.2,6.3) and the fact that (%M - C¢) is skew-symmetric, we obtain
V = A§T Buy - A6T [D(9) - D(84)] (6.4)

Evaluate the time integral of (6.4) :

V() -Vit)) = [ A6TBudi— / " AdT [D(6) - D(da)] at (6.5)
tAéTBul dt = V(t)-V(t)+ / " AdT [D(é)- D(éd)] dt (6.6)
to to

Assumption 6.1 implies that V is positive definite, and Assumption 6.2 implies that
AT [D(8) - D(fa)] > 0, v, 6
such that (6.6) satisfies the condition for passivity (Definition 2.6). "

Note that the position feedback is not required in general to guarantee passivity, e.g. the spring coupling
matrix for manipulators with linear flexible joints may be used to define R which then takes the form
[31] R
R= K.N* -K.N
-K.N K.

and is then positive semi-definite (K. is positive definite). However, the position feedback is useful to
guarantee (weak) zero—state detectability (Section 7).

Also note that the system remains passive in the absence of friction, i.e. if D(8) = o.
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Moreover, assumption 6.2 could be relaxed by employing the factorization
D(8) = Di(8) + Dob (6.7)

and replacing D(éd) in the feedforward by Dl(é) + Dob4, Do > 0, assuming that the feedforward is
solvable.

Then, [D(B) - D(éd)] is replaced by DoA# in (6.1, 6.2, 6.4, 6.5, 6.6) such that due to the positive
semi-definitiveness of Dg, only Assumption 6.1 is required to guarantee passivity.

6.1.2 Strictly passive feedback

Choose
u = ug — Co(BTAD) (6.8)

where C, is strictly passive and BIBO stable. Then, by the Passivity Theorem (Section 2), the map from
ug to BTA@ is L, stable.

The closed loop error system is given by
M()ad + Co(6,6)86 + D(8) - D(8a) + R + BE,BT| A6 + BC,(BTA6) = Bu, (6.9)
and, using the same energy function V as before (6.3),
V = A67 Bu, — A6" [D(6) - D(bs)] - [BTAé]TCu(BTAé) (6.10)
Proposition 8.2 If u; = 0, we can conclude that (A, AB) converges to the largest invariant set in

{(A8,A8) : BTAG = 0} for (84,84) uniformly bounded.

Proof : Recall that the strict passivity of C, means

/ wTCy(w)dt > =72 +n/ llwlf? dt (6.11)
to

for any T > tp, w € La,, where 7 > 0 is a constant, and the constant y depends on the initial condition
of the internal state of C,. Using (6.11) and integrating (6.10), we have

1% (Aa(T),Aé(T)) ~V (26(t0), 80(t0)) < ' -1 / ’ “B%é(t)”2 dt
—/tT A6T(t) [D(A(1)) — D(Ba(1))] dt

From this inequality, we conclude that V(A#f, A8) is uniformly bounded. Also, positive definitiveness of
V implies that A8 and Ad are uniformly bounded. By (3.31), the Coriolis and centrifugal force term in
the error equation (6.9) is bounded above in norm under the assumption that 84 is uniformly bounded.
Hence, given the BIBO stability of C,, we conclude from (6. 9) that Af is uniformly bounded. Uniform
boundedness of f; must also be assumed in order to guarantee uniform boundedness of the feedforward.
Uniform boundedness of Af implies continuity of A8, which, along with the fact that BTAB(t) € Lo,
lead to the conclusxon that BTAH(t) — 0 asymptotically by Barbalat’s lemma [25]. .

Furthermore, assume that Od E C* k>2,andthat D ¢ Ch-? (nq Coulomb friction or exact compensation
of the discontinuous terms). Also consider the fact that M(#) and Cc(8, v) are functions of sin and cos,
and are uniformly bounded as well as all their higher time derivatives if v and its higher derivatives
are uniformly bounded. Then, by taking successive time derivatives of (6.9) and from (A8 = 6 — 64),
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we find that all higher derivatives of Ad up to its (k — 1)** derivative are uniformly bounded, and all
higher derivatives of BT A6 up to its (k — 2)th derivative tend to zero asymptotically. This last result
will be useful in the demonstration of zero-state detectability where the convergence to zero of the higher
derivatives of BT A is needed.

Proposition 6.3 The zero error state of the system with strictly passive BIBO stable feedback C, and
for uz = 0 is (locally) asymptotically stable under the following assumption

Assumption 8.3 BT A is (locally) zero-state detectable in (A8, AB) with respect to the following equa-
tion:

M(8)A6 + Cc(8,6)a8 + D(6) - D(8) + [R + BK,BT| a6 =0

If the detectability is global, then so is the asymptotic stability.
NOTE : conditions for (local) zero-state detectability will be given in Section 7.
Proof : Proposition 6.2 and the BIBO stability of C, imply that
u = Cy(BTAG) =0
Substitute this result in (6.2) to get that for BT A — 0 asymptotically,
M(6)A6 + Cc(8,6)26 + D(8) - D(ba) + [R + BE,BT| 46 — 0

If BTA# is (locally) zero-state detectable in (A, AB) with respect to this equation, then, (A4, Ad) — 0
and the error state of the system is (locally) asymptotic stable. ]

6.2 Stabilization of error system formed by FF6

The design procedure and requirements for the use of FF6 (C is represented using the Mp-notation
(Section 3.1)) are the same as for FF'4 in Section 6.1. However, given the new error equation with static
position error feedback

M(6)A6 + Cp(6,0)A6 + %Mo(e, 88 - %IWD(H, 62)0 + D(8) — D(62)+
[R+BK,BT|A8 = Bu  (6.12)

property (3.25) is used to evaluate the time derivative of V" (6.3) to be (6.4), and to be (6.10) after the
strictly passive feedback is added.

Also, identity (3.30) is used to bound the Coriolis and centrifugal force term in the new error equation
for Proposition 6.2 to hold.

7 Zero-state detectability
In this section, conditions for zero—state detectability are defined for feedforward FF4 with C represented
using the Christoffel’s symbols and for FF8 in which C is represented using the Mp-notation. In essence,

we want to show that in (6.2), (6.12), if the passive output BT A# and the input u; are zero then the
internal state of the system is zero, or tends to zero for weak zero-state detectability (Section 2).

7.1 General result with link damping

For FF4, consider the error equation (6.2), and the scalar function V" (6.3) and its derivative V (6.4).
We want to use V to demonstrate that the link state error tends to zero asymptotically. Suppose that
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Assumption 6.1 holds. After setting u;, and BT 8 to zero, we get, for the general model,
1 1. . .
V= anT [R + BA'pBT] Af + EAHZMH(Og,Om)Aeg

We note that V is positive definite in Ab,. In order to have V positive definite in Af, with Afy = 0 at
its minimum, choose R such that Ryp = —RaT (recall that Ry; > O to satisfy Assumption 6.1). We also

have
V = -a67 [D(§) - D(da)]

Hence, if there is positive link damping, Vis negative semi-definite and Ay — 0. Substituting this
result along with the assumptions on u; and BT Af in (6.2), we obtain

[2+BK,BT| A0 =0
which leads to the conclusion that A@ — 0 by Assumption 6.1, implying that the internal state converges

to zero.

Hence, for any arm configuration and in presence of positive damping at the links, the system is weakly
zero—state detectable (globally) if Assumption 6.1 is satisfied and if we choose R such that Ry, = -RyT.

The same conclusions are reached for FF6 by using the same procedure.

7.2 Results without link damping

In order to assess (weak) zero-state detectability, or zero-state detectability, in the absence of link
damping, we use a different approach than in Section 7.1. This will allow us to obtain a general conclusion
along with some positive results for some general cases. '

NOTE : As seen in Section 7.1, (ul,BTAé, Aé,) = (0,0,0) implies that A#, is zero, and hence the
internal state is also zero.

Consider the error equation of the system (feedforward FF4) with static feedback only (6.2). For the
general model (3.10), after setting u; = 0, and Ad,, and its higher derivatives to zero, (6.2) simplifies to

Mi1(, 0,) A8y + C11(6¢, ¢, 0m, 8 ) A0 + De(8¢) — De(Be,) + R11AGe + Rizd6, = 0 (7.1)
MI(60,0,)Ab¢ + C21(8¢,0¢,0m,0m) D¢ + Ro1 A0y + Ry A + K08, = 0 (7.2)

Then take the time derivative of (7.2) to get, at Ab,, =0,

A/11T2(gt'1 gm)Aega) + 1"{17;(083 éfa 9171, Hm)Aef + 021(0t’, é@y am, ém)Aél '
+C"21(6faéf’ éfvemao'm»ém)Aée + R')]Aé[ = 0 (7’3)
For FF6 we may write similar equations.

RESULT : If (7.3) is asymptotically stable (Aé; — 0) then the system is at least weakly zero-state
detectable and a similar conclusion is obtained for the equivalent equation obta.ined with FF6.

We now consuier three general cases for Wthh we seek conclusions on zero-state detectabxhty

Case 1 Mlg =0

For M;, = 0 and under the additional assumption that the motors are symmetric or that M is inde-
pendent of the motor position, (7.3) becomes

RuAd, = 0 (7.4)
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such that, for R, arbitrary but nonsingular, Ad, and its higher derivatives equal zero and, as noted
previously the internal state is also zero, i.e. we obtain global zero-state detectability.

NOTE : If My, depends on the motor position, then we may still be able to conclude zero-state
detectability depending on the structure of Cy;.

The same procedure may be used for FF6 and leads to similar conclusions.
Case 2: M, is singular but non-zero

We will particularly consider the case when the motors are symmetric and M2 is strictly upper triangular
as an example (Section 3.2.3).

For FF4, (7.3) becomes
ME(0)A8 + MT(8e,00) b + Ca1(8e,00) 8¢ + Co1(8e, 00, 60)26¢ + Rund6e = 0 (1.5)

where M, C21 and their time derivatives are strictly lower triangular (Appendix A). Then, choosing
R to be lower triangular (or diagonal) and nonsingular, it follows from (7.5) that Af, =0 (recursively
solve for Ay, i = 1,---,m), also implying Af, = 0.

As seen before, A = Af = 0 implies that the internal state is zero, and the system is globally zero-state
detectable.

However, without the symmetric motor inertia assumption, C2; may not be strictly lower triangular such
that zero-state detectability may not be shown in the same fashion. However, depending on the new
structure of Cy2, we may possibly show weak zero-state detectability.

For FF6, the derivative of the motor equation with (u;, BTAB,A8,) = (0,0,0) is
MZE(8)A8 + ME(8e,80)A8; + C21(02,00)A8¢ + Cn(8e, 8, 6¢) A0 ~ EMD,21(9t, Be) Db,
1.- S | A . e .
—5Mp 21(62,8e, 60) A6, + 5Mp 21(8e, A8e)8¢ + 5 Mp 21(6e, e, Abe, A8e)0¢ + R1A8, = 0(7.6)

where Mg, Ch, Mp 2 and their time derivatives are strictly lower triangular (Appendix A). Also, row
i of MD,21(0¢,A0'¢) depends only on Aé/_,j, j < ifori=1,---,m. Then, choosing Rz to be lower
triangular (or diagonal) and nonsingular, it follows from (7.6) that A = 0 (recursively solve for Ad,,,
i=1,2,...m), also implying Ab, = 0.

As seen before, A = Af = 0 implies that the internal state is zero, and the system is globally zero-state
detectable.

Case 3: M;; is nonsingular

At this point, we have no results on the zero-state detectability of the system if M2 is nonsingular.
8 Stability analysis under feedforward approximation

The design approach presented in Sections 4 and 6 allows to obtain a complete class of controller guar-
anteeing uniform asymptotic stability for systems meeting all the design conditions. Such a case for
flexible joint manipulator is when motors are symmetric and there is no gyroscopic coupling guarantee-
ing solubility of FF4 and of FF6, and zero-state detectability under some additional design assumptions
(Sections 5, 6 and 7). But if for some feedforward we cannot verify (weak) zero-state detectability, we
cannot draw any conclusions about the system stability at this point. This may append in particular if
an approximation of the exact inverse system based feedforward is used.

If for some canonical feedforward all conditions are met except possibly the solvability condition (no
causal and bounded solution), then we can draw some information from the stability properties of the
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system under the canonical feedforward to analyze stability under other forms of feedforward. To do so,
we use the identity that uniform asymptotic stability implies local exponential stability. We then consider
the variations in the feedforward as perturbations and find the bounds on these perturbations allowing to
maintain stability for the feedforward under analysis, i.e. we perform a robustness analysis with respect
to the variation of the feedforward (see [36] for the application of this method to rigid robots).

We will use this approach to analyze the stability of the different feedforward forms by using FF4 and
FF6 as canonical feedforward compensations. However, we first introduce the formal procedure.

8.1 Procedure

Assume that with some canonical feedforward the zero error equilibrium point is locally exponentially
stable. Then, locally to (A8, Ad) = (0,0), there exists a scalar function V3, V1 = 0 for (A4, A8) = (0,0),

and constants (a, 8,7 > 0) such that

Wz alel? (3.1)
Vi < -7 lel? (8.2)
191l < Bzl (8.3)

where ¢ = [ A8T A6T ]

Proof : To see how these conditions lead to exponential stability, note that (8.3) along with V; = 0 for
(A8, Af) = (0,0) imply that for some constant & > 0,

Vi < & lal? (8.4)
where we may choose k = % . write
: . Izl
W= [van@des| [ vai@ < [T 9@ 4 < 5 I

Combine this result with (8.2) to obtain

i £ -0V - (89)
where o = 1. Now write (8.5) as
Vit+oVi < 0
e"”(t-to)___.__d (ea(t—to)vl) < 0
dt =

Integrate this last equation to get

Va(t, A8(2), 2d(1)) < e=7C=) [Vi(to, (1), Ad(t0))]

i.e. local exponential stability with rate of convergence larger or equal to o is obtained. ]

Write the different forms of feedforward, ug, in terms of the canonical feedforward, usy_, and of a variation

term, e, as
Buﬂ = B“ffc + €

Now consider a scalar function V3 = V7. The time derivative of Va along the solution of the system with
the various forms of feedforward is ' :

Va= Vi + [VWalT MY v)e (8.6)
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where M(v) is the multiplier of A# in the error equation of the system with the canonical feedforward,
e.g. M(8) in (6.9) for feedforward FF4. Write

V2

IA

Vi + [[VasWil” M7 (v)e]

IA

. 1

— IV A sV
Vit 2 19t fe) 1)
Now use (8.2,8.3) and note that |V 3Vi]l < [[V:VA]l < Blz]|, to write

Va < =7 ll2ll® + ¢ llell llell (8.8)

where { = —L Then, if the norm of the variation of the feedforward satisfies one of the two bounds
described below we can assert stability of the system under the new feedforward.

Case 1 : Assume that for some constant x > 0,
llell < xll=|] (8.9)
Then, using (8.8), we obtain
<= (v =) lelf?

Hence, exponential stability with guaranteed rate of convergence g3 > 0 is obtained if the variation of
the feedforward is small enough in the sense that

vy
< = 8.10
X c (8.10)
and using (8.4), o7 is given by
_1-¢x
o= — (8.11)
Case 2 : Assume that for some constants (x,p) > 0,
lell < xllzll + o (8.12)
Then, using (8.8), we obtain
Va <= (v =0 llzll” + Collzll (8.13)
Write | :
-1 1\ 2 €
Collal = =¢o | (€M llzll = 5¢) = el = 5 (3.14)
Substitute (8.14) into (8.13) to get
. €
s < - (7- Cx = Cpe?) el + 25 (8.15)
which, using (8.4), is written as
Va < ~a2Va + p2 (8.16)
where
v — (pe=2
gy = T Ox—lpe ) (8.17)
K
2
€ ‘
py = %_ (8.18)



Now write
VataVa < p2
d (eaz(t—to)vz)

e~ 2(t—to) __

o dt

IA

P2

I;fegfate this last equation to get
Va(t, A8(t), A§(2)) < em727%) [Vz(to, Ad(to), Ab(t0)) - 22| + 22
2 2

Assume that the variation of the feedforward is small enough in the sense that (8.10) holds such that
oz > 0 for €2 > €, where

Define the supremum of V; over ¢ as
VQ = max {Vz(to, Ae(to), Aé(to)), -5—2-}
2

Since V; is positive definite, this implies that the state remains bounded, i.e. we obtain Lagrange stability.
Also, convergence to the set {AO(t),AB(t) : Vo < f’%} with rate of at least o is guaranteed. Note that
choice of a large € guarantees a fast convergence to a large set, while choice of a smaller € > ¢n > 0
does not guarantee such a fast convergence but guarantees convergence to a smaller set, i.e. the state

converges closer to zero.

Following closely this approach tends to give conservative bounds on lle]l. In practice, one may evaluate
explicitly V; using (8.6) and use directly V; and V; to find relationship (8.16) and hence obtain less

conservative bounds.
8.2 [Exponential stability of canonical feedforward

Uniform asymptotic stability of the system under the canonical feedforward with any strictly passive
BIBO stabilizing controller implies local exponential stability. However, it is difficult to explicitly con-
struct V; in (8.1,8.2,8.3) in general. One case for which we can explicitly construct Vj is if there is
damping at the links, case that we will consider here.

We do not provide a demonstration for a genéfal strictly passive controller C, but for a simple case, i.e.
Co(BT A6) = K,BT Ad (the global controller structure is feedforward with proportional-derivative (PD)
controller). Also, for the demonstration, we will assume that only a linear damping term, DoA#, appears

_in the error equation (see (6.7)).

Proposition 8.1 Consider a flexible joint manipulator with linear damping at the links Dy, > 0. Assume
that feedforward FF4 with C represented using Christoffel’s symbols or feedforward FF6 is used. Also,
close a static state error Cp(yp) = K,BTA8 and a strictly passive BIBO controller loop C.(BTAd) =
K,BT A8 where the gains are chosen to satisfy Assumption 6.1 and the following assumption:

Assumption 8.1 K, are chosen such that {Do + BK,BT| > 0.

Then, for 84 sufficiently small in norm, the zero error equilibrium point is locally (to A6 = 0) ezponentially
_stable.

Proof : Consider the following energy based Lyapunov function candidate where the last term is used
to cancel extra terms introduced by the cross term in Af and Ad:

.01 . . '
Vi = -;-AHT [R+ BE,BT| A0 + cA8T M(9)A0 + S 26T M(6)A0 + gaeT [Do + BA’,,BT] A8 (8.19)
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Evaluate the time derivative of V; along the solution of the system given by its error equation ((6.9) for
FF4, and (6.12) plus the stabilizing loop for FF6) to get, using the properties listed in Sections 3.1 and
3.3,

Vi = —cad” R+ BE,BT| A0+ cad” [22(8,6) - Cc(6,6)] A
—AdT [Do + BK,BT - cM(a)] Ad + (cA8T + 567) Buy (8.20)

for FF4 where used the skew—symmetry property of (%M (8, 9) - C(6, 0)) and we assume u; = 0, and

Vi = —caf” [R+ BE,BT| A |
+cadT [M(o, §)A6 — Cp(8,0)A6 - %MD(G,é)éd + %MD(G,éd)é:I
—~A67 [Do + BK, BT - cM(8)] A6 + (cA8T + A8T) Buz (8.21)
for FF6 where we used (3.25) and also assume u; = 0.

We now proceed to show that V) and Vi satisfy (8.1,8.2,8.3,8.4).

Lower bound of V; (8.1) : From (8.19), we have

Vi > %(a,, + ca) [|AG]F - exar [120]] [ 26]] + %aM |ad)’ (8.22)
for ¢ > 0. Write the cross term as

— cym || A8 “Aé" = ”TM [(q N ||Ae'||)2 - &|a)® - 2 "Aélﬂ (8.23)

such that, using (8.23) in (8.22), V; satisfies
2 |2 2
Vi 2 o |A0)2 + g | 28] 2 ]
where
a; = 1 (a + ca, — ¢y [62) g = l (aM - C‘)’M€—2)
1 2 ] v M€ 2 2 1

a = min {a;, az}

Proof : of the last inequality. Write, for the 2 — norm, (we assume a; and a3 nonnegative)

autiaaf +ealJadf = || VRS |

which concludes the proof. n

2
> min {ay, a2} ||:::||2

To guarantee positive definitiveness of V;, we impose a; > 0, az > 0 yielding

c o, + ca
YM 6% < P v
M

which, for a nontrivial solution requires

CYM < ap + cay
apf CYM
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This is satisfied for ¢ small enough, i.e. 0 £ ¢ < ¢, where

B

2 2
apro ata ap o
¢y = 2”+("”4”+ i (8.24)
275¢ 4T 2474

Upper bound of Vi (8.4) : From (8.19), we have

Vi < % (10 + 1) 18] + cvar | 26]] "Aé“ + %w ||Aé||2 (8.25)
Write
eva 120 |ad] = £ [- (llad] - & |ad])” + & l1asl? + |]Aé"2] (8.26)

such that, using (8.26) in (8.25), V; satisfies
112
Vi < k(187 + w2 [ A6]" < w o]

where

(7M + c'yMez'z) >0

(AN

1
K1 = 3 (‘)’p + ¢t + C‘)’Meg) >0 Ko =

K = maz {K1,K2}

Proof : of the last inequality. Write, for the 2 — norm,

NI,
JRz08

2

s l|86] + 2 26| = < maz {sa, 2} |1z

which concludes the proof.
Hence, V; is upper bounded for any bounded c.

Upper bound of V,;V; (8.3) : V; being lower and upper bounded by quadratic functions, and con-
tinuous, the norm of the gradient of V; with respect to its argument is also bounded. Evaluate explicitly

the gradient of V) with respect to A from (8.19) :

Vo Vi(A0,88) = cM(8)A8+ M(6)AG (8.27)
such that 7
IV asVill < Bulla0I+ 82 |26 < Bzl
where
Br=cym>0 B2 =vm>0
B=5+5

Proof : of the last inequality. Write, for 3; and 3; nonnegative,

B 1A8]| + B2 | ad| < B llall + B2 =l

which leads directly to the bound in 3. »
Upper bound of Vi (8.2) : Use (8.20) ‘mrd,, ErE})grty (3.33) to obtain, for FF4,
Vi < —cap [|AGIF + c1c, |A8]] "Aé“2 + cve, 128 "AG” ”"du ~ e = c7M] HM”’ (8.28)
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and use (8.21) and property (3.27) to obtain, for FF6,
Vi < —ca, 8017 + e370 1801 [a6]" + S 1801 [a6] 6] - fe = cvarl | 28]
Identify v7 with vc, in (8.28) and 77 with 3yp in (8.29) to write, for both FF4 and FFS,
Vi < —eap 18817 + 71 (18] |40+ cv aal [ ad] [da] - fa = evarl |26

We will use this last equation to find conditions for the negative definitiveness of V.
For negative definitiveness of Vi, we first need
ca, >0 and ay—Ccypm >0

Due to Assumption 6.1, this is satisfied for 0 < ¢ < ¢z where
a‘U

T™

Cy =

Then, use

ey ||éa] 112811 ]|Ao|]_c— |o,,“[ (esliad) - 5 HA()") + A0 + ¢ HA()“]

V< —c oy - ﬂeg 2 ”] 1A% + evr (1A ||Ae|| - [au - et - c—c 26 ||] ”AH"
Assume that ||Ad]| is uniformly bounded above by . such that
ay = CYM — €Y1Ye > 0

and that "éd“ is uniformly bounded above by 74. Then

Vi < - llad)? -y |ad]” <~ o)
where
n=c [ap - %6%7&] Y2 = @y — CTM = EVIVe = 012163'274
v = min {11,712}

where we assumed 7; and ¥, positive. This last condition is satisfied and Wi is negative definite if

, :
€34 2 ap
< €3 < E71
Qy = CYM — CVI7e 3 Yd
For a non trivial solution, we need
A
cHvd < op

oy — CYM = €YY FVd

Hence, 4 must satisfy

1
o < 2 [ap(au —cm - C‘)’I‘Ye)] 2
Y c
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Summary : Conditions (8.1,8.2,8.3) are satisfied if A8 and 84 are small enough in norm and satisfy
relation (8.32) for

) 0 < ¢ < min {cy, 2}
where ¢, and ¢, are respectively given by (8.24) and (8.31). -

We may ascertain a rate of convergehée larger or equal to ¢ = 1. Note that a better evaluation of the

. N
convergence rate is given by 0 = min { 3, 2 ¢,

Also note that (8.32) indicates that an increased supremum of the norm of 8, reduces the allowable bound
~e such that the region of convergence decreases.

Moreover, we obtain similar qualitative results for both FF4 and FF6 and the effective difference would
show up in the evaluation of the bounds through 7;.

8.3 Stability for various forms of feedforward

We now conclude on the stability with the various forms of feedforward by using the results of the previous
section on the exponential stability of FF4 and FF6.

The variation terms e for the different forms of feedforward with respect to the canonical feedforward
depending on the canonical feedforward used, we will consider separately the analysis based on the
results for FF4 (representation of C using Christoffel’s symbols) and for FF8 (representation of C' using

Mp-notation).
NOTE : In order to obtain a better bound on the variation of V, than in (8.7), explicitly evaluate (8.6)
using (8.27) or equivalently by identifying Buz with e in (8.20) :

Vi + (cAOT + AéT) e
Vi + (clladll+ [ad]) el
< Vit A llall el

v,

IA

where we may use 3’ = (¢ + 1). We then identify { with 3’ in (8.8).

8.3.1 FF4 as the canonical feedforward

The variation terms e for the different forms of feedforward with respect to the canonical feedforward
FF4 with C represented using Christoffel’s symbols are given by

FF1. e = [M(8:) = M(8))0a+ [Cc(8s,84) = Cc(8,6)) 6+ 7(8s) — 7(8)
FF2. e = [M(02) - M(8)) 62 + [Co(8a,00) - Cc(8,6)] b

FF3. e = 7(84) - 7(6)

FF7. e = —~M(8)84 — Cc(8,8)84 — Doby + 7(82) — 7(6)

FF8. e = —M(8)8s — Co(6,8)64 — Doy

We did not consider FF5 and FF8 because C is not represented by the same notation as FF4.

The norm of the variation e can be bounded above by
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184(82) ~ M®)8a] + | [Co(0s,62) = Co(8, )] ba| + l17(6) - @)
1 [da] 1881 + 704 8] 1481 + 76 | Ba] | 28] + v 1201
(vD7ad + 1047} + 7R 186]] + 1074 | A8

FF1. el

74N

where we used (3.26, 3.34, 3.35).

|(p0a) - M(o)] Ba| + || [Cc(6a, 6a) - Cc(8,8)] 6|
7o [l 1801+ voa ] 2011+ ¢ 6] [ 4]
(YD7dd + vcard) 180) + vc74 HMU

FF2. el

IN

IN

where we used (3.26, 3.34).
FF3. [l < rlAd]

where we used (3.35).

| #(8)64] + | Cc(6,0)da] + | Dofa]| + I7(6) = @)

™ Héd“ +7c Hédug +7c uéd” ”Aﬁﬂ + 71D, éd” +vr||AG]]
Tr||A8| + vc74 "M” + (YM7Yad + 70773 + TDoVd)

IN

FF7. |e|

IA

where we used (3.31, 3.35). o
[@8e] + |cot6,6)64] + | Dobd|
™ ”54" +7c ”éde +7¢ nédu “AO” + TDo

eleal "Aé" + (YM7Vdd + Yc 13 + 1DoYd)

FF8. |e||

IA

IN

2

I

where we used (3.31).

The variation of the feedforward signal e for FF1, FF2 and FF3 may be written in the form of (8.9),
while for FF7 and FF8 it may be written in the form of (8.12).

The conclusions on the stability and performance for the different forms of feedforward are summarized
in Table 1. Achievable type of stability, and qualitative conditions on design parameters for stability,
for fast rate of convergence and for smallness of the convergence set (for Lagrange stability) are listed in
the table. We recall that to guarantee stability, we require that oy in (8.11) or o3 in (8.17) is positive
depending on the form of the bound on the error signal and that a faster rate of convergence is obtained
as these variables increase. For the Lagrange stability, convergence to a smaller set about the zero error
state is guaranteed as p, decreases in (8.18).

8.3.2 FF6 as the canonical feedforward

The variation terms e for the different forms of feedforward with respect to the canonical feedforward
FF8 are given by

FF1. e = [M(64) — M(9)] 64 + [CD(e,,,éd) - Cp(8,8) + 1Mp(8, é)] 6y - 1Mp(8,64)8 + 7(84) — 7(6)
FF2. e = [M(8s) - M(8)]6s + [Cp(8a,604) ~ C(6,6) + LMp(6,6)] 84 - $ Mp(8,64)6
FF3. e = 1Mp(8,0)6, — $Mp(8,6.)0 + 7(8.) — 7(6)
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small enough small small
rFFl “ (7‘1,7,1,1_,13) | local exponential | (74,744,7}3) [ _ |
[FF2 ]| (74,744) | local exponential | (74, 742) [ —— ]
[ FF3 | (7r) | local exponential l (R) _ l‘ R |
[ FF4 | —_ [ local exponential | J— T — |
[FFT]| (ya,7r) |  Lagrange |  (¥4:Ydd7R) (74, Ydd) |
LFF8 | (74) | Lagrange | __ (74:7a0) (7, Vdd) |
Table 1: Stability and performance analysis, FF4 as canonical feedforward
FF4. e = 1Mp(8,0)0, — 1 Mp(6,04)

FF5.
FF7.

FF8

Condition for
stability:

Type of
stability

Condition for fast
rate of convergence:

Condition for

convergence to small set:

e= f(gd) - 'i"(9)
e = -M(8)8: - [Cp(6,6) - 1Mp(8,6)] 2 — 1Mp(8,82)8 — Doba + 7(62) = 7(9)

. e= —M(8)8; - [CD(o,é) - %MD((),B')] 64 — YMp(8,64)8 — Doby

The norm of the variation e can be bounded above by

FF

L el

lI7(62) — 7(9)l

IA

= (vorae + 3193 + 7m) 12611 + §rova 0]

where we used (3.26, 3.30, 3.35).

FF2. e

< “[M(Bd) ~ M(8)] é’d” + H [cD(ofi,éd) — Cp(8,6) + $Mp(8,6)] ba - %MD(o,éd)éﬂ
1o | 1881 + Fvoe ||| 1281+ 7o [6d] |24

, (7D7dd + %‘md‘/f) a8l + 3o “Ae“

IN

where we used (3.26, 3.30).

FF3. |e|

< [|8M00,6)6 - §Mp(8.626) + 17(62) = 7O

IA

‘where we used (3.29, 3.35).
< ||4Mo(6,6)6 - §Mp(8.020]

FF4. ||

vo|é] | 9]
4]

IA

YDVd

where we used (3.29). -

FFs.

llell

< vrllad|

7o |8a] 28] + 7= 1201
1R 11801 + 7074 | A4
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where we used (3.35).

FF7. ||

IA

”M(o)gd” + ” [CD(O,é) - %]VfD(g, 0)] éd + %MD(G,éd)é” + ”Do9dn + ”71(0:1) — F(0)l|
ar |[fa]) + 370 Hédﬂz + 370 [8a] | 28] + 700 64| + 7R 1126

1r|1A8] + 37D74 ”A9” + (7M’Ydd + 39pvi + ‘YDO‘Yd)

IA

where we used (3.28, 3.35).
"M(e)i)‘d” +|[cn8,8) - 1Mp(8,0)] ba + $Mp(8,64)6] + | Do
b

FF8. [lef| <
< ] + 370 |+ v o] [ 9] + 70,

= 2ypy4 ”A9” + (7M7dd +3pd + 'mo‘m)

where we used (3.28).

The variation of the feedforward signal e for FF1, FF2, FF3, FF4 and FF5 may be written in the form
of (8.9), while for FF7 and FF8 it may be written in the form of (8.12).

The conclusions on the stability and performance for the different forms of feedforward are summarized
in Table 2. Achievable type of stability, and qualitative conditions on design parameters for stability, for
fast rate of convergence and for smallness of the convergence set (for Lagrange stability) are listed in the
table.

Condition for Type of Condition for fast Condition for
stability: stability rate of convergence: | convergence to small set:

small enough small small
FF1 || (vd4,7Ydd,7R) | local exponential (vd, Ydd» YR) —_
FF2 (7d, Yad) local exponential (Yd, Ydd) _
FF3 (Yd» TR) local exponential (74, TR) —
FF4 (va) local exponential (72) —
FF5 (vr) local exponential (R) —
FFé —_ local exponential _ —_—
FF7 (74, 7R) Lagrange (7d; 7dd> TR) (7d> Ydd)
FF8 (7a) Lagrange (Yd; Ydd) (7d> Yda)

Table 2: Stability and performance analysis, FF6 as canonical feedforward

8.3.3 Summary

We see from Tables 1 and 2 that the conditions for stability and fast rate of convergence with the different
forms of feedforward involve the upper bound on three parameters that can be affected by design :

o Bounds (74,744) are made small by using a slow desired output trajectory (8¢, and its higher
derivatives). These bounds are also affected by the system parameters and by the parameters of
the compensators through the solution of 8, and its higher derivatives (see Section 5).

o The bound g is made small by choosing R giving the best fit of the gradient of the spring char-
acteristic in the sense that sup {||Vsr(8) — R||} is minimized for R in the set of matrices meeting
g

the design requirements (Sections 5, 6 and 7). For a linear spring characteristic, this leads to
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vr = 0 if we may choose [r(f) — 6] = 0. Then, odd and even numbered feedforward forms become

equivalent.
9 Conclusion

We have presented a controller design approach based on passivity and Lyapunov stability theory for the
tracking of flexible joint manipulators. The overall design procedure may be viewed as consisting of two

main steps described below.

Firstly, compensators are designed by taking advantage of the inherent passivity properties of flexible
joint manipulators. The procedure for the design of the passivity based controller involves essentially
the formation of a passive and zero-state detectable error system by use of feedforward compensation
and static state feedback, and the asymptotic stabilization of the system by using any strictly passive
controller with finite gain. However, the feedforward compensation, which is based on plant inversion,
may not have a causal solution, or it may be very difficult to solve for a stable inverse of the system due
to its nonlinear nature, such that implementation of the controller is then compromised. Also, certain
terms of the dynamical equation may have a negligible effect on the overall dynamics of the system, e.g.
Coriolis and centrifugal effects at low velocities, such that we might want to neglect these terms in the

feedforward.

In the second step, we use stability results from the passivity based design, i.e. uniform asymptotic
stability of the system implies local exponential stability, to analyze the stability of the system with
various feedforward compensation. To do so, we conduct a Lyapunov based robustness analysis with
respect to approximations in the feedforward compensation. This analysis allows to ascertain local
asymptotic stability or Lagrange stability of the system under certain conditions involving bounds on
the parameters of the system, and on other parameters that are affected by design such as the rapidity
of the desired output trajectory. In order to obtain quantitative results, i.e. obtain numerical values for
the bounds, we must explicitly construct a Lyapunov function (local) for the system, which may impose
additional constraints on the system (we required the presence of damping at the links in our analysis).

This design approach may be abplied to both rigid robots and flexible robots. A particular case where this
approach may be particularly useful is for the controller design of flexible joint robots with small, unmod-
eled or badly known gyroscopic effects, so that inclusion of these effects in the feedforward compensator

is not practical.

Future work will tackle both theoretical an practical problems encountered in the control of flexible joint
robots, and of flexible structures in general. Plans include

e Analysis of the active use of the link state measurement in the design framework presented here in
order to improve the performance of the system.

e Design a nonlinear observer to estimate the link state based on the motor state measurement, since
measurement of the link state is not available in general.

e Design a saturation—driven trajectory generator in order to maintain stability and performance of
the system in the presence of hard constraints, in particular of input torque saturation.

o Pursue the validation of the results.
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Appendix

A Centrifugal and Coriolis matrix for M, strictly upper triangular and symmetric
motor inertia

In this section, we present the equations for the Coriolis and centrifugal matrix for flexible joint robots
with symmetric motor inertia, and with the matrix of gyroscopic couplings M, strictly upper triangular
and having the following structure

0 my2(0e1) mi3(0e1,0e2) - Mmim(Bea,-s0em-1)
0 ma3(fe2) - Mam(8e2,0 0, 0m-1)
Mi2(00) = . ) } i
0 0 0 <. 0

where m, ; are scalar functions.

We recall that the mass matrix of the system can be represented as follows

oo = [ il e |

and note that we will use § = [ 6,7 6,7 | with B¢, 0, € R™.

We will see that we may factor the Coriolis and centrifugal matrix as

[ CA(8e,6e) + CB(8e,0m) Ci(8e.62)
C3(8e,6¢) 0

where the individual terms of this matrix are defined below.

C(6¢,0m,00,6m) =

A.1 Equations for C represented using Christoffel’s symbols

We recall that the coefficient of the Coriolis and centrifugal matrix are given by (see Section 3.1)

=1 |oMy; | OM  OM;|
Chi = 22[89; 90, aek]e' (A1)

=1

First, restrict (1 < k £ m), (1 < j < m) in (A.1). After simplification due to the dependence of My,
Mg, Mlj; uniquely on §; and due to the fact that My, is constant, we can rewrite the equation as

Cuykj) = Cf‘l(ae,ée)-i-Cﬁ(ﬂg,ém)

with
Ao gy _ o1 [OMi k. )(8e) My k,i)(8e)  OMuyij)(Oe)| 5
C(8e,8,) = ;2[ T T T 8,
m ’ T 7
Bon 1 [0Myg 5,80 OMis,5(00)]
Cii(fe,0m) = ;5[ 90, ; - 39':,1 .

where we recognize Cﬁ(@g,ég) as the Coriolis and centrifugal term of the rigid robot, and CEB(6,6.) is
skew—symmetric and has the following structure

[ 0 . . cl'Z(Gl,l" . 'sal,m—l;om,31 ) "1ém,m)
—612(01,1,' "70l,m—l;om.37' "10m,m) 0
CE(0r,6,) = : . . 4 . .
—Cl(m—2)(ol.l Ty 01.’,771—1 : am,m.—l ) gm,m) _CQ(m—z)(gl,Zv s gf,m—l ; om,mv—l ’ gm,m)
—cl(m—l)(gl_’,l’ Tt Ty gf,m—l; 9m.m) -C'Z(m—l)(gf,zw MY 0€,m—l§ om,m)
0 0
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c13(0e,1, - ',ef'm—l;émAs T '96?7"»"‘) Tt Cl(m-l)(9£,1, T ',9z,m-1§9-_m,m) 0
023(9&27' : 'vgf.m-—1§gm,4w' "10m,m) s C2(m-—1)(0£,2, .. "of,m—l;om,m) 0
-CS(m—z)(ol,I}, D el,m—l;ém,m'_l, ém,m) e c(m—Z)(m—l)(el.m—2, ot,m—l ’ gm,m) 0
—Cs(m—l)(gt,a, <o 0em-1;0m.m) . 0 0

0 e 0 0|

where c;; are properly defined scalar functions. We note that for i = 1,---,m, row ¢ of CE does not
depend on any 6, ;, j < %

Now, restrict (1 < k < m), (m < j £ 2m) in (A.1). After simplification, and defining p = j — m, we can
rewrite the equation as

Cizikp) = Ciorp
Z l aMl,zy(k.p)(gl) - 8M12(i,p)(9£) g,
- 2 0 001k 4

=1

We note that for k& > p, the elements of the matrix are zero such that this matrix is strictly upper
triangular.

Now, restrict (m < k < 2m), (1 € j < m) in (A.1). After simplification, and defining p = k — m, we can
rewrite the equation as

Coupg) = Cﬁ'(pyj)
>3 OMiyp,5)(0e) + My (8] 5
2 98¢ ; 00, o

=1

We note that for j > p, the elements of the matrix are zero such that this matrix is strictly lower

triangular.

Now, restrict (m < k £ 2m), (m < j < 2m) in (A.1). After simplification, we obtain
Cp =0
A.2 Equations for C represented using Mp-notation
We recall that the coéﬂ'iéiéﬁt of the Coriolis and centrifugal matrix are given by (see Section 3.1)
Cc(8,8) = MD(H 8) - -MD(e 8) (A.2)

Mp(8,v)

\; aM(a) T (A.3)

where e; is the i** unit vector in R™.
* Using (A.3), we obtain
MD 11(9e,9e) + MD 11(8e, m) 0

Mp(0e,0e,6,,) =
D (82, 8¢, 6m) MA (8, e) 0
where
. IM, (0
M3 11(60,60) = Z 81915( 4 mT
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- MB.(60,6,) = R femT
D,u( 4 m) ; 091,,-
- ™ OMT(8,) -
M6‘21(0¢,9t) = Z 31(921( e)gtem:fr
i=1 ”

where em; is the i** unit vector in R™.

Furthermore, using (A.2), we have
A . A . 1 A T .
Cu(gla ) = MD,n(ol, be) - 3™Dn (6¢, 8¢)
. . 1 T .
CH(0e,0m) = MB11(8e,6m) - §M5,11 (62, 6m)

. 1 T .
Ciy(6e.60) = ~SMBn’ (6e,00)
C'fl(ot,é!) = Mg,zx(el»él)

We note that Cﬁ(@g,ég) is the Coriolis and centrifugal term for the rigid robot. Also,

"'ldu(ae,l, Tty Hl,m-l;ém,z, . "ém,m) md12(6£,1a Tty 92,m—1; ém,a, Tty ém,m)

0 md22(0e,2, -, 0t,m—1;0m .3, *5 Om;m)
Mg,n(alaem) = : :
0 0
0 0
md13(9l,11' ”10C,m—1;0:'m,47' - '10:m,m.) Tt mdl(m—l)(gl,h' : 'agl,m—l;ém,m) 0
md’ZS(el,?a Tty Gl,m—l;em,th T Ty om,m) Tt md2(m-—1)(95.2’ Ty ol,m—l; gm,m) 0
0 Tt md(m—l)(m—l)(elym—l; 6"m.m) 0
0 .o 0 0

where md;; are _properly defined scalar functions, so that for i = 1,- -, m, row i of Cﬁ(&g,ém) does not
depend on any 8, ;, 7 < t.

We also note that M3'21(9[, 8,) is strictly lower triangular such that C2(8e,8,) is strictly upper triangular,
and C4 (8¢, 0¢) is strictly lower triangular.

NOTE : We note that the two representations for C' considered here yield a Coriolis and centrifugal
matrix with the same structure and characteristics.

B Feedback equivalence of flexible joint robots to passive systems
Here, we want to analyze the property of feedback equivalence of flexible joint robots to passive systems.
To achieve this, we first present some definitions and results extracted from [5] and then apply the
theorems to flexible joint robots.

B.1 Feedback equivalence of nonlinear systems to passive systems

Consider a nonlinear system T described by equations of the form

i o= f@) g (B.1)
y = h(z) (B.2)
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with state space X = RY, set of input values U = R™ and set of output values ¥' = R™. The set U
of admissible inputs consists of all U-valued piecewise continuous functions defined on R. f and the m
columns of g are smooth (i.e. C*) vector fields and A is a smooth mapping. We suppose that the vector
field f has at least one equilibrium; without loss of generality, we can assume f(0) = 0 and ~(0) = 0.

Definition B.1 By regular static (i.e. memoryless) state feedback, we mean a feedback of the form
u = a(z)+ B(z)v (B.3)

where a(z) and 3(z) are smooth functions defined either locally near z = 0 or globally, and B(z) is
invertible for all r.

Definition B.2 The system represented by (B.1, B.2) is feedback equivalent to a passive system if there
ezists a regular static state feedback (B.3) such that the closed loop system

[f(z) + g(z)a(z)] + g(z)B(z)v
h(z)

T

y

is passive.

Definition B.3 A system of the form (B.1) is said to have relative degree {1,---,1} at z = 0 if the
matriz L h(0) is nonsingular.

In Definition B.3, we use the following notation [13]:
q

A Oh(z

La@) &3 T q)

=1 b

where gi(z) = Eig(z) with E; € R™*™ has element i,i equal to one, and all its other elements equal
zero.
The relative degree is also equal to the smallest order of time derivative of the output in which the input

appears explicitly.

Definition B.4 The distribution A spanned by the vector fields gi(z),- -+, gm(x) is involutive if, for
gi,g; € A, the Lie bracket

a 0g; ag; .
[gi,gj]=a—x]9a‘—5jgj€§ fori,j=1,---,m

This is equivalent to say that

rank {g1(z)," -, gm(2)} = rank {g1(z), ooy gm(2), (90,95} forij=1,---,m

If system (B.1,B.2) has relative degree {1,---,1} at = = 0 and the distribution A spanned by the vector
fields g1(z), -, gm(z) is involutive, it is possible to find g — m real-valued functions z1(z), -y Zg-m(2),
locally defined near z = 0 and vanishing at = = 0, which, together with the m components of the
output map, qualify as a new set of local coordinates. In the new set of coordinates (z,y) the system is
represented in its normal form

: = q¢(z,y) (B.4)
y = bz y)+ea(zy)u (B.5)

where the matrix a(z, y) is nonsingular for all z, y near (0,0).
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The zero dynamics of a system describe those internal dynamics which are consistent with the external
constraint ¥y = 0. If a system has relative degree {1,---,1} at z = 0, its zero dynamics exist in a
neighborhood X° of z = 0, evolve on the smooth (¢ — m)-dimensional submanifold

Z = {:c € X°%: h(z) = 0}
and are described by a differential equation of the form
i=f(z) =zeZ
in which f"(z) (the zero dynamics vector fields) denotes the restriction to Z" of the vector field
| £ () = f(2) + g’ (2)

with

w'(2) = = [Loh(2)] ™" Lsh()
In the normal form (B.4,B.5) the zero dynamics are characterized by the equation

z=g(z,0)
In order to have a globally defined normal form, the following conditions must be satisfied:

H1 : the matrix Lyh(z) is nonsingular for each z € X,
H2 : the vector fields §;(z) - - - §m(z) (defined below) are complete,

H3 : the distribution spanned by gi(z) - gm(2) is involutive,

where
[§1(2) -+ Gm(2)] = 9(z) [Loh(2)]™

Note that by complete, we mean that the integral curves are defined for all ¢ > 0 for any initial conditions.

Definition B.5 A nonnegative function V : X — R is said to be proper if for each a > 0, the set
V-1([0,a]) = {z € X : 0 < V(z) < a} is compact.

Definition B.8 Suppose L, h(0) is nonsingular. Then T is said to be:

i) minimum phase if z = 0 is an asymptotically stable equilibrium of q(z,0),

il) weakly minimum phase if there ezists a Ck, k >2, functzon W™ (z), defined near z = 0 with W' (0) = 0,
which is positive definite and such that L. O)W' ( ) €0 for all z near z = 0.

Suppose H1, H2 and H3 hold. Then T is said to be:

i) globally minimum phase if z = 0 is a globally asymptotically stable equilibrium of ¢(z,0),

ii) globally weakly minimum phase if there ezists a Ck k > 2, functzon W' (z2), defined for all z with
W' (0) = 0, which is positive definite and proper such that L, O)W' (2) £0 forall .

Definition B.7 A point z° is a regular point for a system T of the form (B.1) if rank {L h(z)} is
constant in a neighborhood of x°.



Also, we assume that rank {g(0)} = rank {dh(0)} = m.
We can now state the main theorems relating feedback equivalence of nonlinear systems to passive
systems. S C :

Theorem B.1 [5] Suppose = = 0 is a regular point for ¥. Then I is locally feedback equivalent to a
passive system with a C? storage function V', which is positive definite, if and only if ¥ has relative degree
{1,---,1} at z = 0 and is weakly minimum phase.

Theorem B.2 [5] Assume H1, H2 and H3. Then T is globally feedback equivalent to a passive (respec-
tively, strictly passive) system with a C? storage function V, which is positive definite, if and only if £
is globally weakly minimum phase (respectively, globally minimum phase).

B.2 Flexible joint manipulators

We now find the conditions under which a manipulator with flexible joints is feedback equivalent to a
passive system, i.e. under which Theorem B.1 or B.2 is satisfied.

First consider the general model of a manipulators with flexible joints (3.10) repeated here for complete-

ness

Mll(ely Bm) M12(9179m) .01 +
MEL(66,0m) M2(6n) g,

C11(0e,6m,8,0m)  C12(e,0m,00,0m) | | 6 | .
021(0[,0m,9(,0m) 022(0330"”0[;9"1) om

D (0) r (0 ,Gm) _ 0
[ Dr:(éfn) ] * [ r:(ﬁﬁ,ﬁm) ] = [ I ] u (3.6)

First, write (B.6)in the form of (B.1,B.2), i.e. define

F T
v = [oTedeTal]
r; = 6 To = b T3 = b T4 =10n

~ Cn Cuiz || = + Dy I I I
P2 Cn Ca 2 Dm T2
where the state dependence has been dropped, and use the fact that My, is nonsingular (in fact so is

M33) to write the inverse of the mass matrix as

M+ M MupA MM M M AT ]

-1 _
M— = [ -AYMEMT A7l

where B o o
Ag = Myg — MEM My

We may then write, after some simple manipulations,

i - [M5t + M M A7 MEMS o1+ M Mz A7 p2 —-Ml‘llMllgA;l
- AT MEMG - A pe + A3 ”
I3 I Omxm R

Consider the case where the output is a linear combination of the state and is given by

y:h(x):{Cl Cy C; 04]9:
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where Cy, Cq, C3, C4 € R™*™ are constant.

We readily verify that rank {g(0)} = m for any arm configuration since Az is always nonsingular. We

will impose the constraint on A(z) that rank {dh(0)} = m, i.e. the vector [ Ci C; C3 C4 ] has rank
m.

First, find conditions on the output matrix such that the system has relative degree {1,---,1} at z = 0.
Write
Oh(z), _; -1 . Oh(z)  _
Lih(z) = =5 = Mi'Mud; '+ o, 2 !
= [-CiMG M + o) A
Fact B.1 Since the matriz A, is nonsingular for any state value, the system has relative degree {1,---,1}

at £ = 0 if and only if the matriz ® = [—ClMﬁl Mg + Cg] is nonsingular for z = 0.
NOTES :
e For any arm configuration, the presence or absence of the motor and link positions in the output
does not affect the conclusion of Fact B.1.

e If there is no gyroscopic coupling, i.e. M;; = 0, then C; must be nonsingular, i.e. the motor
velocities must appear at the output, and C is arbitrary.

e If M, is nonsingular for any state value, choosing the output as the link velocities with C; non-
singular is sufficient to guarantee that ® is nonsingular since Mj; is nonsingular for any state
value.

e If My, is not zero at z = 0, then &(0) is singular only for specific combinations of C; and C3.
The point z = 0 is regular if rank{®} = m in a neighborhood of z = 0. This is guaranteed by the
continuity of My; and My, if ® is nonsingular at z = 0. This holds globally (condition H1) for proper

choices of C; and C; for any arm configuration due to the boundedness of M;; and My, i.e. if we choose
C, and C, such that

SUP Ormaz { C1 M1 (23, 24) ™" M1z (33,24) } < Omin {C2}

This holds in particular if C; = 0 or M;; = 0, and C; is nonsingular.

We now proceed to show the (weak) minimum phase property. The zero dynamics of the system are
described by the following equation :

f(2) - g(z) Lh(2)| " Lyb(z) 2 €2
f(a:)—g(:r)Aﬂ)'l[C'l C: Cs Cilfx) z€Z

T

1l

assuming that ® is nonsingular in the neighborhood of z = 0. After some manipulations, this leads to

- [Mt + MY M@~ CI M| oy + M M13@7! [Cazy + Caza]
d-1C M py = @71 [Cazy + Cyza] zeZ
I
)
We consider two cases here while keeping in mind that we must satisfy ® nonsingular. We define the
output as a function of the motor state only for the first case, and of the link state only in the second
case.



Case 1 : C; = C3 = 0, C; nonsingular, Cy nonzero.
The dynamics on the zero manifold are described by

—Ar{l_llpl + A/Il_llﬂ/flgc-z—lC4I2
—C{IC4J:2
1
2

zGZ'={xeX°:ngg+C4z4=0}

8.
il

Setting the output to zero, we get

Cozy+Cyzy = 0
Iy = —02—104.’24

Hence, if C'2°16'4 > 0 then z4 — 0 exponentially; if C4 = 0 then z4 is a constant; in general, z4 — null
space of 6'2"104 > 0. :
NOTE : With the output of the system defined as the output of a exponentially stable first order

exosystem with the motor position as its input, zero system output implies that the motor state goes to
zero. If the exosystem is just stable, then we can only guarantee that the motor position will go to a

constant.

Given that the motor position z4 converges exponentially to a constant z45 and the motor velocity z3 to
zero, the question of stability of the zero-dynamics resumes to analyze the stability of

I ~-M3'm P
[ia} { T2 = 0; T4 = T4y

1
This equation has the same stability properties as a rigid robot with a constant forcing term in 4.
Hence, consider the following scalar function

1
V(z1,2z3) = 5:1:{;%([11(:1:3,:1:4;):1:1+U(1‘1,:c3) (B.7)

U(zy,23) = /:3 r1(€, zag) d€

U(zy,23), and thus V(z1,z3), is positive definite if the equivalent torsional spring is strong enough with
respect to gravity, i.e. if : : : : ,

- [ - 1—11(3?3,I4f) [Cr1(x3, 245, 71,0)z1 + De(21) + 71(23, Tag)]
T

NV ki(z3,245) > =V 90(23, Z45) Vz3, 47 € R™
for r; defined as in (3.11) with k;(z3,z.) monotonically increasing in 3, and k1(0,0} = g,(0,0) = 0.

Represent the centrifugal and Coriolis matrix using Christoffel’s symbols such that (%M - () is skew
symmetric, which also imply that (3M11 — Cny) is skew symmetric. Then, take the time derivative of
(B.7) to obtain

V(zy,23) = —27 De(z1)

such that, for positive or at least non negative damping, V < 0. Hence, we conclude that the zero
dynamics of the system are stable, and that the system is at least weakly minimum phase (Definition

B.6). e o

NOTE : If there is positive link damping then we conclude that r; — 0 as well as its higher derivatives,
~ such that the system equation becomes

0 = ri(z3,z4)
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which defines the steady state value(s) of z3, i.e. the system is stable and weakly minimum phase.

With or without damping, if C, is nonsingular such that q:;f = 0, then the zero state is asymptotically
stable such that the system is minimum phase (Definition B.6).

In conclusion, the conditions of Theorem B.1 are satisfied, i.e. the system is locally feedback equivalent
to a passive system, for the output containing only the motor state, i.e. if

y=Cobm +Cibpn

e if and only if

x rank{C2} = m such that rank{dh(0)} = m, and such that the system has relative degree
{1,---,1} and is regular at any point in the state space,

* C'2'1C'4 > 0, i.e. stable exosystem,
e and if the spring is stiff enough compared to gravity and the link damping is at least positive
semi-definite such that the system is weakly minimum phase.
Case 2 : Cy = C4 = 0, C; nonsingular, C3 nonzero.
We must first assume that M;; is nonsingular to guarantee that ® is invertible.
The dynamics on the zero manifold are described by

—C'l'lC'3a:1
M3 py + MG M1 CT Camy
T
T3

xEZ'={x€X°:C'1:1:1+C'3$3=O}

Setting the output to zero, we get

Ciz1+Csz3 = 0
ry = —0;103.’1}3

Hence, if Cl'ng > 0 then z3 — 0 exponentially; if C3 = 0 then z3 is a constant; in general, z3 — null
space of C;‘Cs > 0.

NOTE : With the output of the system defined as the output of a exponentially stable first order
exosystem with the link position as its input, zero system output implies that the link state goes to zero.
If the exosystem is just stable, then we can only guarantee that the link position will go to a constant.

Given that the link position z3 converges exponentially to a constant z3; and the link velocity z; to zero,
the question of stability of the zero-dynamics resumes to analyze the stability of

T2 _ M3 p e g —
[5?4] = { 25 Ty = 0; z3 = Z3f

_ [ - M3 (235, 24) [Cra(23g, 24,0, 22)22 + T1(237, 74)]
T
Hence, the stability of the zero dynamics of the system depends on the stability of the gyroscopic coupling
subsystem (note that M;, may be positive definite, negative definite or indefinite (and also zero)). If
this subsystem is stable, then so are the zero dynamics. With the assumption that 7, is defined as
previously and that ky(z3,z4) is monotonically decreasing with z,, this imposes the condition that
Mi2(z3s,74) > 0 Vz3g, £, € R™. Also note that if the motors have symmetric inertia, C\, is independent
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of z, and is thus zero in this case such that we can get Lyapunov stability only (which is still sufficient
to guarantee the system to be weakly minimum phase).

In conclusion, the conditions of Theorem B.1 are satisfied, i.e. the system is locally feedback equivalent
to a passive system, for the output containing only the link state, i.e. if

y= Clé[ + Cabe

if and only if

M, is nonsingular,

rank{C1} = m such that rank{dh(0)} = m, and such that the system has relative degree {1,---,1}
and is regular at any point in the state space,

C{‘IC;; > 0, i.e. stable exosystem,

the subsystem representing gyroséopic coupling is stable.

We have established some conditions to obtain feedback equivalence to a passive system by using uniquely
the motor or the link state. The same method may be used to analyze other choices of output, but this
analysis is not carried out at this point due to the difficulty in verifying the stability of the reduced

system describing the zero-dynamics.

In case 1 previously presented, the minimum phase or weak minimum phase properties are in fact gloi)al.
No such conclusion can be drawn for case 2 under the actual assumptions. Also, the two previous cases
also satisfy condition H1. Hence, only conditions H2 and H3 have to be verified to obtain global results

using Theorem B.2.
To verify H2, evaluate g(z) :

— MM 0!
i $-1
jlz) = 0

0

such that the integral curves are defined for all ¢ > 0 and for all initial conditions provided that & is
nonsingular over the complete state space.

To verify H3, note that the Lie bracket [g;,g;] = 0, Vi,j = 1,---,m so that (B.4) is verified, i.e. H3 is
satisfied without additional conditions.

Hence, in order to conclude on global equivalence, the only additional condition to verify with respect to
the local case is the global asymptotic or global stability of the zero dynamics, e.g. conditions regarding
damping in case 1 previously analyzed. '

50

L wi o wi wmen wE K & mW W L wiL wmg moo. mi s w

&l



References

[1] C. Abdallah, D. Dawson, P. Dorato, and M. Jamshidi. Survey of robust control for rigid robots.
IEEE Control Systems Magazine, 11:24-30, February 1991.

[2] B.D.O. Anderson. A system theory criterion for positive real matrices. SIAM Journal on Control,
5(2):171-182, 1967.

[3] T.M. Apostol. Mathematical Analysis. Addison-Wesley, 2 edition, 1975.

[4] S. Arimoto and F. Miyazaki. Stability and robustness of PD feedback control with gravity com-
pensation for robot manipulator. In ASME Winter Meeting, pages 67-72, Anaheim, CA, December
1986.

[5] C.I. Byrnes, A. Isidori, and J.C. Willems. Passivity, feedback equivalence, and the global stabilization
of minimum phase nonlinear systems. [EEE Transaction on Automatic Control, 36(11):1228-1240,
November 1991.

[6] P.E. Crouch and B. Bonnard. An appraisal of linear analytic systems theory with applications to
attitude control. ESTEC Contract 3771/78/NL/AK(SC), European Space Agency Contract Report,
May 1980.

[7] A. De Luca. Dynamic control of robots with joint elasticity. In Proc. 1988 IEEE Robotics and
Automation Conference, pages 152-158, Philadelphia, PA, 1988.

[8] A. De Luca, A. Isidori, and F. Nicol6. An application of nonlinear model matching to the dynamic
control of robot arm with elastic joints. in L. Basanez, G. Ferraté, and G. N. Saridis. In Robot
Control (SYROCO ’85), International Federation of Automatic Control, 1985.

[9] C.A. Desoer and M. Vidyasagar. Feedback Systems: Input-Output Properties. Academic Press, New
York, 1975.

[10] D. Hill and P. Moylan. The stability of nonlinear dissipative systems. IFEE Transaction on Auto-
matic Control, 21:708-7T11, October 1976.

[11] D. Hill and P. Moylan. Dissipative dynamical systems: Basic input-output and state properties. J.
Franklin Inst., 309(5):327-357, 1980.

[12] P. Ioannou and G. Tao. Frequency domain conditions for strictly positive real functions. IEEE
Transaction on Automatic Control, 32(10):53-54, Oct 1987.

[13] A. Isidori. Nonlinear Control Systems. Springer-Verlag, New-York, 2 edition, 1989.

[14] K. Khorasani. Adaptive control of flexible joint robots. In Proc. 1991 IEEE Robotics and Automation
Conference, pages 2127-2134, Davis, CA, apr 1991.

[15] L. Lanari and J.T. Wen. A family of asymptotic stable control laws for flexible robots based on a
passivity approach. CIRSSE Report 85, Rensselaer Polytechnic Institute, February 1991.

[16] L. Lanari and J.T. Wen. Asymptotically stable set point control laws for flexible robots. Accepted
for publication in the Systems and Control Letters, 1992.

[17] LD. Landau and R. Horowitz. Synthesis of adaptive controllers for robot manipulators using a
passive feedback systems approach. In Proc. 1988 IEEE Robotics and Automation Conference,
pages 1028-1033, Philadelphia, PA, April 1988.

[18] P.J. Moylan. Implications of passivity in a class of nonlinear systems. [EEE Transaction on Auto-
matic Control, 19(4):373-381, August 1974.



(19] S. Murphy, J.T. Wen, and G.N. Saridis. Simulation and analysis of flexibly jointed manipulators.
CIRSSE Report 56, Rensselaer Polytechnic Institute, April 1990.

[20] S.H. Murphy, J.T. Wen, and G.N. Saridis. Efficient dynamic simulation of flexibly jointed manip-
ulators. In Proc. 29th IEEE Conf. Decision and Control, pages 545-550, Honolulu, HI, December

1990.

[21] R. Ortega and M.W. Spong. Adaptive motion control of rigid robots: A tutorial. In Proc. 27th
IEEFE Conf. Decision and Control, pages 1575-1584, Austin, TX, December 1988.

[22] B. Paden, B. Riedle, and E. Bayo. Exponentially stable tracking control for multi-joint flexible-link
manipulators. In Proc. 1990 American Control Conference, pages 680-684, San Diego, CA, June

1990.

[23] E.L Rivin. Effective rigidity of robot structure: Analysis and enhancement. In Proc. 1985 American
Control Conference, pages 381-382, Boston, MA, June 1985.

[24] P. Sicard and J.T. Wen. A passivity based control methodology for flexible joint robots with appli-
cation to a simplified shuttle RMS arm. CIRSSE Report 95, Rensselaer Polytechnic Institute, July

1991.
[25] J.-J.E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, 1991.

[26] M.W. Spong. Modeling and control of elastic joint robots. ASME J. Dynamic Systems, Measurement
and Control, 109:310-319, Dec. 1987.

[27] M.W. Spong. Control of flexible joint robots: A survey. UILU-ENG-90-2203 DC-116, University
of Ilinois at Urbana-Champaign, February 1990.

[28] L.M. Sweet and M.C. Good. Redefinition of the robot motion-control problem. IEEE Control
System Magazine, pages 18-25, August 1985.

[29] M. Takegaki and S. Arimoto. A new feedback method for dynamic control of manipulators. ASME
J. Dynamic Systems, Measurement and Control, 102, June 1981.

[30] P. Tomei. An observer for flexible joint robots. I[EEE Transaction on Automatic Control, 35(6):739~
743, jun 1990.

[31] P. Tomei. A simple PD controller for robots with elastic joints. IEEE Transaction on Automatic
Control, 36(10):1208-1213, October 1991.

[32] M. Vidyasagar. Lq-instability criteria for interconnected systems. SIAM Journal on Control and
Optimization, 15(2):312-328, February 1977.

[33] M. Vidyasagar. Nonlinear Systems Analysis. Prentice-Hall, NJ, 1978.

[34] M. Vidyasagar. New passivity-type criteria for large-scale interconnected systems. [EEE Transac-
tion on Automatic Control, 24(4):575-579, August 1979.

[35] M. Vidyasagar. System theory and robotics. IEEE Control Systems Magazine, pages 16-17, April
1987.

[36] John T. Wen. A unified perspective on robot control: The energy lyapunov function approach.
International Journal of Adaptive Control and Signal Processing, 4:487-500, 1990.

[37] J.T. Wen. Time domain and frequency domain conditions for strict positive realness. [EEE Trans-
action on Automatic Control, 33(10):988-992, Oct 19883.

l 1]

L[]

Wi

1l

il

aii.



[38] J.C. Willems. The generation of Lyapunov functions for input—output stable systems. SIAM Journal
on Control, 9(1):105-134, February 1971.

[39] J.C. Willems. Dissipative dynamical systems part I : General theory. Arch. Rational Mech. Anal.,
45:321-351, 1972.

[40] J.C. Willems. Dissipative dynamical systems part I : Linear systems with quadratic supply rates.
Arch. Rational Mech. Anal., 45:352-393, 1972.

[41] J.C. Willems. Mechanisms for the stability and instability in feedback systems. Proceedings of the
IEEE, 64(1):24-35, January 1976.

[42] J.C. Willems. System theoretic models for the analysis of physical systems. Richerche di Automatica,
10(2):71-106, December 1979.

[43] J.L. JR. Wyatt, L.O. Chua, J.W. Gannett, I.C. Goknar, and D.N. Green. Energy concepts in the
state-space theory of nonlinear n-ports: Part I - passivity. IEEE Transaction on Circuits and
Systems, CAS-28(1):48-61, January 1981.

53



'R e me




