78 research outputs found

    Solar transition region and coronal response to heating rate perturbations

    Get PDF
    The solar transition region is in a dynamic state characterized by impulsively upflowing plasma and continually downflowing plasma. Using numerical simulations, the conjecture that the areas of downflowing plasma are simply the base regions of coronal loops in which the heating rate is gradually decreasing and the areas of upflowing plasma are the base regions of coronal loops in which the heating rate is gradually increasing is examined. The calculations suggest that gradually reducing or increasing the heating in a magnetic flux tube will not result in plasma motions that are similar to those that are observed at high spatial resolution in the UV

    Resonant Scattering of Emission Lines in Coronal Loops: Effects on Image Morphology and Line Ratios

    Get PDF
    We have investigated the effects of resonant scattering of emission lines on the image morphology and intensity from coronal loop structures. It has previously been shown that line of sight effects in optically thin line emission can yield loop images that appear uniformly bright at one viewing angle, but show ``looptop sources'' at other viewing angles. For optically thick loops where multiple resonant scattering is important, we use a 3D Monte Carlo radiation transfer code. Our simulations show that the intensity variation across the image is more uniform than the optically thin simulation and, depending on viewing angle, the intensity may be lower or higher than that predicted from optically thin simulations due to scattering out of or into the line of sight.Comment: Accepted for publication in Ap

    Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares: I. The Numerical Model

    Full text link
    Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the NRL flux tube code. We calculated the collisional heating rate from the particle transport code, which is more accurate than those based on approximate analytical solutions. We used a realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a nonthermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (vs. chromosphere), a larger downward conductive flux, and thus a stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced X-ray emission.Comment: Accepted by ApJ (2009 June 12), 15 page, 12 figure

    Observation and Modeling of Coronal "Moss" With the EUV Imaging Spectrometer on Hinode

    Full text link
    Observations of transition region emission in solar active regions represent a powerful tool for determining the properties of hot coronal loops. In this Letter we present the analysis of new observations of active region moss taken with the Extreme Ultraviolet Imaging Spectrometer (EIS) on the \textit{Hinode} mission. We find that the intensities predicted by steady, uniformly heated loop models are too intense relative to the observations, consistent with previous work. To bring the model into agreement with the observations a filling factor of about 16% is required. Furthermore, our analysis indicates that the filling factor in the moss is nonuniform and varies inversely with the loop pressure

    Comprehensive Determination of the Hinode/EIS Roll Angle

    Full text link
    We present a new coalignment method for the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft. In addition to the pointing offset and spacecraft jitter, this method determines the roll angle of the instrument, which has never been systematically measured, and is therefore usually not corrected. The optimal pointing for EIS is computed by maximizing the cross-correlations of the Fe XII 195.119 \r{A} line with images from the 193 \r{A} band of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). By coaligning 3336 rasters with high signal-to-noise ratio, we estimate the rotation angle between EIS and AIA and explore the distribution of its values. We report an average value of (-0.387 ±\pm 0.007)\deg. We also provide a software implementation of this method that can be used to coalign any EIS raster.Comment: Accepted for publication in Solar Physics, 11 pages, 7 figure

    Characteristics of Solar Flare Doppler Shift Oscillations Observed with the Bragg Crystal Spectrometer on Yohkoh

    Full text link
    This paper reports the results of a survey of Doppler shift oscillations measured during solar flares in emission lines of S XV and Ca XIX with the Bragg Crystal Spectrometer (BCS) on Yohkoh. Data from 20 flares that show oscillatory behavior in the measured Doppler shifts have been fitted to determine the properties of the oscillations. Results from both BCS channels show average oscillation periods of 5.5 +/- 2.7 minutes, decay times of 5.0 +/-2.5 minutes, amplitudes of 17.1 +/- 17.0 km/s, and inferred displacements of 1070 +/- 1710 km, where the listed errors are the standard deviations of the sample means. For some of the flares, intensity fluctuations are also observed. These lag the Doppler shift oscillations by 1/4 period, strongly suggesting that the oscillations are standing slow mode waves. The relationship between the oscillation period and the decay time is consistent with conductive damping of the oscillations.Comment: Accepted for publication in Ap

    LEMUR: Large European Module for solar Ultraviolet Research. European contribution to JAXA's Solar-C mission

    Get PDF
    Understanding the solar outer atmosphere requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1" and 0.3"), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 17 and 127 nm. The LEMUR slit covers 280" on the Sun with 0.14" per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km/s or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.Comment: 35 pages, 14 figures. To appear on Experimental Astronom

    Structural diversity and tree density drives variation in the biodiversity-ecosystem function relationship of woodlands and savannas

    Get PDF
    Positive biodiversity-ecosystem function relationships (BEFRs) have been widely documented, but it is unclear if BEFRs should be expected in disturbance-driven systems. Disturbance may limit competition and niche differentiation, which are frequently posited to underlie BEFRs. We provide the first exploration of the relationship between tree species diversity and biomass, one measure of ecosystem function, across southern African woodlands and savannas, an ecological system rife with disturbance from fire, herbivores and humans. We used >1000 vegetation plots distributed across 10 southern African countries, and structural equation modelling, to determine the relationship between tree species diversity and aboveground woody biomass, accounting for interacting effects of resource availability, disturbance by fire, tree stem density and vegetation type. We found positive effects of tree species diversity on aboveground biomass, operating via increased structural diversity. The observed BEFR was highly dependent on organismal density, with a minimum threshold of c. 180 mature stems ha-1. We found that water availability mainly affects biomass indirectly, via increasing species diversity. The study underlines the close association between tree diversity, ecosystem structure, environment and function in highly disturbed savannas and woodlands. We suggest that tree diversity is an under-appreciated determinant of wooded ecosystem structure and function
    • …
    corecore