52 research outputs found

    Characterizing larval swordfish habitat in the western tropical North Atlantic

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Fisheries Oceanography, 27 (2018): 246-258, doi:10.1111/fog.12249.Swordfish Xiphias gladius (Linnaeus, 1758) are a circumglobal pelagic fish targeted by multiple lucrative fisheries. Determining the distribution of swordfish larvae is important for indicating reproductive activity and understanding the early life history of swordfish. We identify and characterize larval swordfish distributions during peak swordfish spawning throughout the Gulf of Mexico and western Caribbean Sea with generalized additive models (GAMs) using catches of swordfish larvae during ichthyoplankton surveys in April and May of 2010, 2011, and 2012. The best fit GAM, as determined by stepwise, backward Akaike Information Criterion selection, included both physiochemical (temperature at 5 m, sea surface height anomaly (SSHA), eddy kinetic energy (EKE)), temporal (lunar illumination, hour of sampling) and spatial (location) variables, while near-surface chlorophyll a concentration residuals remained as a random effect. The highest probability of larval swordfish catch occurred at sub-surface temperatures, SSHA, and EKE values indicative of boundary currents. Standard lengths of larvae were larger further downstream in the boundary currents, despite high variability in length with location due to multiple spawning locations of swordfish near these currents. Probability of larval swordfish catch also peaked during the crescent and gibbous moons, indicating a lunar periodicity to swordfish spawning. These results suggest that swordfish may spawn during select moon phases near boundary currents that transport their larvae to larval and juvenile habitat including the northern Gulf of Mexico and coastal waters of the southeast United States.NASA Grant Numbers: NNX11AP76G, NNX08AL06

    ENSO-Induced Co-Variability of Salinity, Plantkton Biomass and Coastal Currents in the Northern Gulf of Mexico

    Get PDF
    The northern Gulf of Mexico (GoM) is a region strongly influenced by river discharges of freshwater and nutrients, which promote a highly productive coastal ecosystem that host commercially valuable marine species. A variety of climate and weather processes could potentially influence the river discharges into the northern GoM. However, their impacts on the coastal ecosystem remain poorly described. By using a regional ocean-biogeochemical model, complemented with satellite and in situ observations, here we show that El Niño - Southern Oscillation (ENSO) is a main driver of the interannual variability in salinity and plankton biomass during winter and spring. Composite analysis of salinity and plankton biomass anomalies shows a strong asymmetry between El Niño and La Niña impacts, with much larger amplitude and broader areas affected during El Niño conditions. Further analysis of the model simulation reveals significant coastal circulation anomalies driven by changes in salinity and winds. The coastal circulation anomalies in turn largely determine the spatial extent and distribution of the ENSO-induced plankton biomass variability. These findings highlight that ENSO-induced changes in salinity, plankton biomass, and coastal circulation across the northern GoM are closely interlinked and may significantly impact the abundance and distribution of fish and invertebrates

    Influence of food quality on larval growth of Atlantic bluefin tuna (Thunnus thynnus) in the Gulf of Mexico

    Get PDF
    Larval abundances of Atlantic bluefin tuna (ABT) in the Gulf of Mexico are currently utilized to inform future recruitment by providing a proxy for the spawning potential of western ABT stock. Inclusion of interannual variations in larval growth is a key advance needed to translate larval abundance to recruitment success. However, little is known about the drivers of growth variations during the first weeks of life. We sampled patches of western ABT larvae in 3–4 day Lagrangian experiments in May 2017 and 2018, and assessed age and growth rates from sagittal otoliths relative to size categories of zooplankton biomass and larval feeding behaviors from stomach contents. Growth rates were similar, on average, between patches (0.37 versus 0.39 mm d−1) but differed significantly through ontogeny and were correlated with a food limitation index, highlighting the importance of prey availability. Otolith increment widths were larger for postflexion stages in 2018, coincident with high feeding on preferred prey (mainly cladocerans) and presumably higher biomass of more favorable prey type. Faster growth reflected in the otolith microstructures may improve survival during the highly vulnerable larval stages of ABT, with direct implications for recruitment processes.En prensa1,74

    Bluefin Tuna Larvae in Oligotrophic Ocean Foodwebs, Investigations of Nutrients to Zooplankton: Overview of the BLOOFINZ-Gulf of Mexico program

    Get PDF
    Western Atlantic bluefin tuna (ABT) undertake long-distance migrations from rich feeding grounds in the North Atlantic to spawn in oligotrophic waters of the Gulf of Mexico (GoM). Stock recruitment is strongly affected by interannual variability in the physical features associated with ABT larvae, but the nutrient sources and food-web structure of preferred habitat, the edges of anticyclonic loop eddies, are unknown. Here, we describe the goals, physical context, design and major findings of an end-to-end process study conducted during peak ABT spawning in May 2017 and 2018. Mesoscale features in the oceanic GoM were surveyed for larvae, and five multi-day Lagrangian experiments measured hydrography and nutrients; plankton biomass and composition from bacteria to zooplankton and fish larvae; phytoplankton nutrient uptake, productivity and taxon-specific growth rates; micro- and mesozooplankton grazing; particle export; and ABT larval feeding and growth rates. We provide a general introduction to the BLOOFINZ-GoM project (Bluefin tuna Larvae in Oligotrophic Ocean Foodwebs, Investigation of Nitrogen to Zooplankton) and highlight the finding, based on backtracking of experimental waters to their positions weeks earlier, that lateral transport from the continental slope region may be more of a key determinant of available habitat utilized by larvae than eddy edges per se.Postprint1,74

    Andragogy in Practice: Applying a Theoretical Framework to Team Science Training in Biomedical Research

    Get PDF
    This study is the first to apply the theoretical principles of Malcolm Knowles’ theory of andragogy to evaluate data collected from learners who participated in team science training workshops in a biomedical research setting. Briefly, andragogy includes six principles: the learner’s self-concept, the role of experience, readiness to learn, orientation to learning, the learner’s need to know, and intrinsic motivation. Using an embedded study design, the primary focus was on qualitative data, with quantitative data complementing the qualitative findings. The deductive analysis demonstrated that approximately 85% of the qualitative data could be connected to at least one andragogical principle. Participant responses to positive evaluation questions were largely related to two principles: readiness to learn and problem-based learning orientation. Participant responses to negative questions were largely connected to two different principles: the role of experience and self-direction. Inductive analysis found an additional theme: meeting biological needs. Quantitative survey results supported the qualitative findings. The study findings demonstrate that andragogy can serve as a valuable construct to integrate into the development of effective team science training for biomedical researchers

    Trade-Offs Between Risks of Predation and Starvation In Larvae Make the Shelf Break an Optimal Spawning Location For Atlantic Bluefin Tuna

    Get PDF
    Atlantic bluefin tuna (ABT) (Thunnus thynnus) travel long distances to spawn in oligotrophic regions of the Gulf of Mexico (GoM) which suggests these regions offer some unique benefit to offspring survival. To better understand how larval survival varies within the GoM a spatially explicit, Lagrangian, individual-based model was developed that simulates dispersal and mortality of ABT early life stages within realistic predator and prey fields during the spawning periods from 1993 to 2012. The model estimates that starvation is the largest cumulative source of mortality associated with an early critical period. However, elevated predation on older larvae is identified as the main factor limiting survival to late postflexion. As a result, first-feeding larvae have higher survival on the shelf where food is abundant, whereas older larvae have higher survival in the open ocean with fewer predators, making the shelf break an optimal spawning area. The modeling framework developed in this study explicitly simulates both physical and biological factors that impact larval survival and hence could be used to support ecosystem based management efforts for ABT under current and future climate conditions

    Influence of the Seasonal Thermocline on the Vertical Distribution of Larval Fish Assemblages Associated with Atlantic Bluefin Tuna Spawning Grounds

    Get PDF
    Temperature is often an important variable influencing the vertical position of fish larvae in the water column. The same species may show different vertical distributions in areas with a strong near-surface seasonal thermocline compared to isothermal near-surface regions. In areas with a strong surface thermocline, tuna larvae show a significant preference for the near-surface warmer layers. Little is known regarding larval tuna vertical distribution in isothermal waters and on the vertical distribution of the associated larval fish assemblages. We conducted vertical stratified sampling using the same methodology and fishing device (MOCNESS) in the two major spawning areas of Atlantic bluefin tuna (BFT): western Mediterranean Sea (MED), characterized by a surface thermocline, and the Gulf of Mexico (GOM) which lacks thermal stratification. Tuna larvae occupied the upper 30 m in both areas, but the average larval depth distribution was consistently deeper in the GOM. In the MED, vertical distribution of larval fish assemblages was explained by temperature, and species such as BFT, Thunnus alalunga, and Ceratoscopelus maderensis, among others, coexist above the thermocline and are separated from species such as Cyclothone braueri and Hygophum spp. (found below the thermocline). In the GOM, the environmental correlates of the vertical distribution of the larvae were salinity and fluorescence. Mesopelagic taxa such as Ceratoscopelus spp. and Cyclothone spp., among others, had a shallower average distribution than Lampanyctus spp., Hygophum spp., and Myctophum spp.Versión del edito

    Trophic Ecology of Atlantic Bluefin Tuna (Thunnus thynnus) Larvae from the Gulf of Mexico and NW Mediterranean Spawning Grounds: A Comparative Stable Isotope Study

    Get PDF
    The present study uses stable isotopes of nitrogen and carbon (δ15Nandδ13C) as trophic indicators for Atlantic bluefin tuna larvae (BFT) (6–10mm standard length) in the highly contrasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic Sea (MED). These regions are differentiated by their temperature regime and relative productivity, with the GOM being significantly warmer and more productive. MED BFT larvae showed the highest δ15N signatures, implying an elevated trophic position above the underlyingmicrozooplankton baseline. Ontogenetic dietary shifts were observed in the BFT larvae from the GOM and MED which indicates early life trophodynamics differences between these spawning habitats. Significant trophic differences between the GOM and MED larvae were observed in relation to δ15N signatures in favour of the MED larvae, which may have important implications in their growth during their early life stages. These low δ15N levels in the zooplankton from the GOM may be an indication of a shifting isotopic baseline in pelagic food webs due to diatrophic inputs by cyanobacteria. Lack of enrichment for δ15N in BFT larvae compared to zooplankton implies an alternative grazing pathway from the traditional food chain of phytoplankton— zooplankton—larval fish. Results provide insight for a comparative characterization of the trophic pathways variability of the two main spawning grounds for BFT larvaeVersión del editor4,411
    corecore