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ABSTRACT: 

  Swordfish Xiphias gladius (Linnaeus, 1758) are a circumglobal pelagic fish targeted by 

multiple lucrative fisheries. Determining the distribution of swordfish larvae is important for 

indicating reproductive activity and understanding the early life history of swordfish. We 

identify and characterize larval swordfish distributions during peak swordfish spawning 

throughout the Gulf of Mexico and western Caribbean Sea with generalized additive models 

(GAMs) using catches of swordfish larvae during ichthyoplankton surveys in April and May of 

2010, 2011, and 2012. The best fit GAM, as determined by stepwise, backward Akaike 

Information Criterion selection, included both physiochemical (temperature at 5 m, sea surface 

height anomaly (SSHA), eddy kinetic energy (EKE)), temporal (lunar illumination, hour of 

sampling) and spatial (location) variables, while near-surface chlorophyll a concentration 

residuals remained as a random effect. The highest probability of larval swordfish catch occurred 

at sub-surface temperatures, SSHA, and EKE values indicative of boundary currents. Standard 

lengths of larvae were larger further downstream in the boundary currents, despite high 

variability in length with location due to multiple spawning locations of swordfish near these 

currents. Probability of larval swordfish catch also peaked during the crescent and gibbous 

moons, indicating a lunar periodicity to swordfish spawning. These results suggest that swordfish 

may spawn during select moon phases near boundary currents that transport their larvae to larval 

and juvenile habitat including the northern Gulf of Mexico and coastal waters of the southeast 

United States.  

Key Words: GAM, Larval Habitat, Gulf of Mexico, Caribbean Sea, Xiphiidae, Swordfish 
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INTRODUCTION: 1 

Swordfish Xiphias gladius (Linnaeus, 1758) are a circumglobal oceanic fish targeted by 2 

multi-million-dollar longline and drift gill net fisheries (Ito et al., 1998; Ward et al., 2000). 3 

Swordfish caught in the United States Atlantic Exclusive Economic Zone (EEZ) are primarily 4 

members of the Northwest Atlantic stock as defined by the International Commission for the 5 

Conservation of Atlantic Tunas (ICCAT, 2014). Swordfish in this stock migrate from the Grand 6 

Banks off Newfoundland to the Caribbean Sea and Gulf of Mexico (Palko et al., 1981; 7 

Nakamura, 1985; Neilson et al., 2014). Juvenile swordfish (< 130 cm) prefer warmer waters such 8 

as the Gulf of Mexico and waters of the southeast US, while larger swordfish primarily occupy 9 

waters with colder surface temperatures, such as Georges Bank (Muhling et al., 2015).  10 

In addition to large scale geographical migrations, adult swordfish are vertical migrators, 11 

spending nights near the surface and diving to depths of ~900 m during daylight (Takahashi et 12 

al., 2003; Abascal et al., 2010). This behavior matches the similar vertical migration of their prey 13 

items: squid and mesopelagic fishes (Scott and Tibbo, 1968; Chancollon et al., 2006). Further, 14 

the extent of vertical migration is influenced by the lunar phase with swordfish ascending to 15 

shallower (deeper) depths in low (high) lunar illumination (Lerner et al., 2013).  16 

 Northwest Atlantic swordfish populations spawn year-round in the Atlantic, from Cape 17 

Hatteras to the waters North of Puerto Rico (see Fig. 1), including the Caribbean Sea and Gulf of 18 

Mexico (Arata, 1954; Grall et al., 1983; Govoni et al., 2000; 2003; Bremer et al., 2005). Most 19 

spawning occurs between December and June in the Gulf of Mexico and Caribbean (Taylor and 20 

Murphy, 1992; Arocha, 1997; Govoni et al., 2003). The neustonic eggs of swordfish spawned in 21 

the Caribbean Sea (where average temperatures are ~25oC) take approximately three days to 22 

hatch (Yasuda et al., 1978; Enfield and Mayer, 1997). After hatching, pre-flexion swordfish 23 

larvae occupy the upper 10 m of the water column, exclusively consuming copepods (Govoni et 24 
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al., 2003). Swordfish larvae become neustonic and piscivorous at approximately two weeks of 25 

age, corresponding to notochord flexion (Govoni et al., 2003). 26 

 Swordfish larvae of various sizes have been found throughout the western Atlantic and 27 

Caribbean, resulting in uncertainty in their spawning locations. Grall et al. (1983) observed small 28 

larvae (<10 mm) in the eastern Caribbean and Straits of Florida and larger larvae (> 10mm) near 29 

the western Antilles. Govoni et al., (2000) suggested that larvae may be spawned as far north as 30 

Cape Hatteras. Further, estimations of spawning locations for swordfish larvae caught in the Gulf 31 

of Mexico and Caribbean have ranged from the north central Gulf of Mexico to the eastern 32 

Caribbean, suggesting spawning may occur as far south as the southern extent of the Sargasso 33 

Sea and the beginning of the Caribbean Current (Govoni et al., 2003). Distribution and larval 34 

habitat have also been described for swordfish larvae in the north central Gulf of Mexico, 35 

suggesting that spawning may occur within the Gulf of Mexico (Rooker et al., 2012). However, 36 

the spatial and temporal extent of many of these studies were limited, with either a limited intra-37 

seasonal spatial extent or spatially limited to regions in the Gulf of Mexico or southeastern 38 

United States (Govoni et al., 2000; Rooker et al., 2012).  39 

Surface transport in the Gulf of Mexico and western Caribbean Sea is dominated by the 40 

Caribbean, Yucatan, and Loop Currents, which become the Florida Current and ultimately the 41 

Gulf Stream after passing through the Straits of Florida (Fig. 1; Oey et al., 2005). The Caribbean 42 

and Loop Currents flow over large zonal distances (≥ 400 km in the case of the Loop Current), 43 

permitting meanders that can separate from the dominant current in the form of mesoscale eddies 44 

(Candela et al., 2002; Richardson, 2005). The Yucatan Current, however, passes through a 45 

topographically constrained channel, resulting in minimal eddy shedding and less variability in 46 

its zonal extent (Oey et al., 2005; Carillo et al., 2016). The fronts associated with boundaries of 47 
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the current systems, as well as the anticyclonic mesoscale eddies they shed, create convergence 48 

zones that concentrate plankton and form essential habitat for pelagic organisms (Bakun, 1996; 49 

2006). These convergent zones in the Gulf of Mexico and Caribbean Sea are often used for 50 

spawning and larval habitat by large pelagic fishes such as Atlantic bluefin tuna Thunnus thynnus 51 

(Linnaeus, 1758) and sailfish Istiophorus platypterus (Shaw, 1792; Teo et al., 2007; Richardson 52 

et al., 2009; Muhling et al., 2010; Simms et al., 2010). Areas of convergence, such as the Gulf 53 

Stream front, serve as habitats for pre-flexion larvae because due to their ability to concentrate 54 

larval swordfish (Govoni et al., 2000). Rooker et al., (2012) also showed that the greatest 55 

probabilities of larval swordfish catches are associated with the Loop Current boundary, further 56 

suggesting that fronts may serve as larval swordfish habitat.  57 

Data from ichthyoplankton surveys along with oceanographic parameters can begin to 58 

elucidate seasonal patterns of larval fish distributions (Houde et al., 1979; Hernandez et al., 59 

2010; Muhling et al., 2010; 2012; Domingues et al., 2016). Habitat models can be formed using 60 

catch data and bio-physical data collected during surveys to predict larval fish distributions to 61 

better understand the diversity and abundance of these larvae in the pelagic environment (Rooker 62 

et al., 2012). The purpose of this work was to identify and predict larval swordfish distributions 63 

during the months of April and May, encompassing part of the peak spawning for swordfish 64 

throughout the Gulf of Mexico and western Caribbean Sea (Govoni et al., 2003). This provides 65 

an opportunity to assess the distribution of swordfish in this region during the same season for 66 

three consecutive years, significantly improving our current understanding of larval swordfish 67 

distribution and swordfish spawning. Based on observations of swordfish larvae in the Gulf of 68 

Mexico and Caribbean, we hypothesized that larvae will most likely to be found in the 69 

Caribbean, Yucatan, and Loop Currents which may serve to transport larvae to suitable habitat to 70 

Page 6 of 42Fisheries Oceanography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

7 
 

optimize growth and/or survival. This work assesses this hypothesis through formation of habitat 71 

models to improve our understanding of the life history of swordfish and further predicts 72 

spawning locations based on the size of larvae collected.  73 

 74 

METHODS: 75 

 Data collected during the 2010-2012 Southeast Area Monitoring and Assessment 76 

Program (SEAMAP) Spring Ichthyoplankton Surveys were used to determine how 77 

oceanographic features influence the presence/absence of swordfish larvae. Sampling occurred 78 

during the months of April and May in the western Gulf of Mexico, the edge of the Loop 79 

Current, and the Yucatan Channel. Western Caribbean sampling regions varied by year (Fig. 2). 80 

Plankton tows were conducted at each station undulating a 1 x 2m 0.505 mm mesh net fitted with 81 

a flowmeter (2030R, General Oceanics, Inc) between the surface and 10 m depth for 10 minutes 82 

(hereafter referred to as S-10; Habtes et al., 2014). Additional neuston tows were also conducted 83 

for 10 min at various stations using a 1 x 2m 0.947 mm mesh net. Tows were conducted during 84 

both day and night. Volume filtered for each tow (m3) was calculated from flowmeter counts. At 85 

most stations a Seabird SBE 9/11 Plus CTD (conductivity, temperature, and depth) equipped 86 

with a dissolved oxygen sensor (SBE 43) was deployed to 300 m. CTD casts were restricted to 87 

50 m above the bottom for stations shallower than 350 m.  88 

Data Processing/Physical Variables:  89 

Swordfish larvae were identified using morphological characteristics by the Sea Fisheries 90 

Institute, Plankton Sorting and Identification Center in Szczecin, Poland. Body length was 91 

measured as standard length (SL) or notochord length (NL) to the nearest 0.05 mm (Supp. Table 92 

1). Maps of the presence/absence and SL of swordfish larvae for each cruise were generated 93 
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using Esri ArcGIS system (Desktop 10.4.1). Sea surface temperature data from the Hybrid 94 

Coordinate Ocean Model (HYCOM) 1/12o resolution Global Reanalysis 95 

(http://hycom.org/data/glbu0pt08/expt-19pt1) were interpolated using the Marine Geospatial 96 

Ecology Toolbox across the sampling region (Roberts et al., 2010).  97 

 Physicochemical parameters were obtained from in-situ CTD data, satellite data, and 98 

HYCOM for use in habitat model formation. Values for daily average sea surface height 99 

anomaly and current velocity were obtained for each station using HYCOM estimates. Eddy 100 

kinetic energy was calculated from these current velocities using the formula:  101 

 102 

[1] EKE= ½(u2+v2) 103 

 104 

where EKE represents eddy kinetic energy (m2s-2), u represents zonal velocity and v represents 105 

the meridional velocity. Near-surface chlorophyll a concentrations for each sampling station 106 

were approximated from the eight-day averaged and 9 km resolution Moderate Resolution 107 

Imaging Spectroradiometer (MODIS), courtesy of the NASA Goddard Space Flight Center, 108 

Ocean Ecology Laboratory, Ocean Biology Processing Group, Greenbelt, MD, USA 109 

(https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/8Day/9km/chlor_a). Bathymetry 110 

(0.03o resolution) at each station was extracted from the NOAA Center for Environmental 111 

Information bathymetry raster (http://maps.ngdc.noaa.gov/viewers/wcs-client/). Fraction of lunar 112 

illumination for each sample day was obtained from the US Navy database 113 

(http://aa.usno.navy.mil/data/docs/MoonFraction.php). 114 

Physicochemical parameters considered in model development were: temperature (oC) at 115 

5 m, temperature (oC) at 100 m, near-surface chlorophyll a concentration residuals calculated by 116 
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removing the temperature trend (mg m-3), dissolved oxygen (5 m) residuals calculated by 117 

removing the temperature trend (mg L-1), salinity (5 m), year, hour of day, latitude, longitude, 118 

fraction of lunar illumination, depth (m), eddy kinetic energy (m2 s-2), sea surface height 119 

anomaly (m), sea surface height anomaly gradient, and eddy kinetic energy gradient (Table 1). 120 

This suite of variables was chosen because they can be used to differentiate and characterize 121 

oceanographic features in the sampling region. Volume of water filtered (m3), hereafter volume 122 

filtered by the net was log transformed for each station and included to standardize sampling 123 

effort because of positive skew in the volume filtered values. All in situ variables (temperature, 124 

dissolved oxygen, and salinity) were determined as the value closest to the desired depth (5 m or 125 

100 m) from the CTD downcast. Residuals of a linear regression with temperature of both 126 

dissolved oxygen and chlorophyll a were used because oxygen and chlorophyll a were strongly 127 

collinear with temperature (r=-0.74, p<0.01; r=-0.49, p<0.01; Fig. 3). The temperature trend was 128 

removed because it drives patterns of both dissolved oxygen and chlorophyll a (Garcia and 129 

Gordon, 1992; Feng et al., 2015). Gradient of sea surface height anomaly and gradient of eddy 130 

kinetic energy were calculated as the gradient between the two nearest HYCOM values (1/12o 131 

separation) to each station for the day of sampling.  132 

Stations lacking CTD casts or containing errors in oxygen values due to sensor 133 

malfunction were removed. In addition, stations sampled in continental shelf waters (<200 m 134 

depth) were removed prior to model formation (n =117 stations removed in total). This is due to 135 

high hydrographic variability in coastal waters (thus the poor accuracy of HYCOM in these 136 

regions) and previous studies suggesting that swordfish larvae are rare in depths < 200 m (Grall 137 

et al., 1983; Chassignet et al., 2007).  138 

Model Formation:   139 
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The aforementioned variables were used to develop generalized additive models (GAMs) 140 

in order to explore the effects of the physical environment on the distribution of swordfish larvae 141 

(Hastie and Tibshirani, 1990). GAMs are statistical models that allow a combination of 142 

physicochemical parameters to interact in a non-linear manner with the response variable and are 143 

non-linear extensions of generalized linear models (Barry and Welsh, 2002). These models 144 

provide a means to discover larval habitats that are difficult to identify through linear models and 145 

simple correlations.  146 

GAMs for this project were developed using the mgcv library in R statistical software 147 

(Version 3.2.3) (Wood, 2008; 2017). We developed presence/absence models rather than 148 

abundance (e.g. catch per unit effort) since abundance data for ichthyoplankton can be difficult 149 

to assess due to the patchy distribution of fish larvae and the course spatial scale of sampling. 150 

The response variable for all models was the presence/absence of swordfish in the S-10 tows as 151 

these were conducted at each station and showed a higher frequency of swordfish catch than the 152 

neuston net. All predictor variables were tested for covariance and collinearity using a 153 

correlation matrix followed by plotting and calculating Pearson’s product-moment correlation 154 

coefficients (r) for each set of covariates. Correlation of predictor variables to the response 155 

variable were then analyzed through single variable GAMs. The predictor variable showing 156 

largest deviance explained when plotted against the response variable was selected for use in the 157 

model. Models were developed using a binomial distribution with a logit link function. Smooth 158 

functions related the response variable (larval presence/absence) to the model parameters, 159 

permitting non-linear relationships. Each smoothing function was permitted three degrees of 160 

freedom to minimize overfitting with the exception of fraction of lunar illumination, which was 161 

permitted five (Sunbland et al., 2009; Rooker et al., 2012). Five degrees of freedom permits the 162 
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fraction of lunar illumination to incorporate sinusoidal and bimodal responses. Response curves 163 

provided visual representations of the smooth functions to qualitatively relate patterns of 164 

presence/absence to physicochemical parameters.  165 

Three parameters were removed due to collinearity: temperature at 100 m (collinear with 166 

temperature at 5m, r =0.62), EKE gradient (collinear with temperature at 5m, r= -0.45), and sea 167 

surface height anomaly gradient (collinear with EKE, r=0.55). After removal of these variables, 168 

the base model included eleven predictor variables and was developed using the following 169 

equation: 170 

[2] Swordfish presence=offset(log(Volume filtered))+s(Temperature at 5 m)+s(Oxygen 171 

residuals) + s(Chlorophyll-a residuals) + s(Salinity at 5 m) + s(Fraction of Lunar Illumination) + 172 

s(Depth) + s(Sea Surface Height) + s(Eddy Kinetic Energy) + te(Longitude,Latitude) + s(Hour of 173 

Sampling)+Year 174 

Where s represents a smooth function and te represents a tensor spline, which allows longitude 175 

and latitude to interact anisotropically (Zurr, 2012; Wood, 2017).  176 

A stepwise backwards Akaike Information Criterion (AIC) method was used to select the 177 

best fit model. AIC is calculated using the following formula  178 

 179 

[3] AIC=-2l+2k 180 

 181 

where l is the maximized log likelihood and K is the number of estimable parameters (Burnham 182 

and Anderson, 2002). The model that resulted in the lowest AIC was selected for each iteration 183 

with the exception of situations where the response curves did not permit reasonable ecological 184 

inference. Model selection was further verified by examining the Akaike weights for each 185 
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iteration of models to select the best model. Akaike weights are calculated through the following 186 

equation: 187 

     [4]  =
	[∆]

∑ 	[∆]



 188 

Where i represents the difference in AIC of a particular model from the lowest AIC for any 189 

model in that iteration. Akaike weights can be interpreted as the probability that a model is the 190 

best model for the iteration (Burnham and Anderson, 2002).  191 

Once a best-fit model was determined, bootstrapping was used to make a Receiver 192 

Operating Characteristic (ROC) curve and measure the area under that curve (AUC). A randomly 193 

selected subset of 120 stations was used as a training data set (approximately one quarter of the 194 

data) with the remaining data serving as the test data set (Huberty, 1994). The true positive rate 195 

of the bootstrap simulation was plotted against the false positive rate to create a ROC curve. The 196 

integration of this curve results in an AUC value. AUC values close to one represent a good fit of 197 

the model to the data set, with values exceeding 0.90 considered excellent. This bootstrapping 198 

was repeated 1000 times and the mean, median, and standard deviation of these AUC scores 199 

were calculated.  200 

 201 

RESULTS: 202 

One hundred and ninety-seven swordfish larvae were collected from S-10 and neuston 203 

nets over the three years of sampling with 78 of 603 (12.96%) stations sampled positive for 204 

presence of swordfish larvae (Fig. 2). Mapping of swordfish catch with monthly mean sea 205 

surface temperature showed a clear association of swordfish larvae with the waters of Caribbean 206 

Current, Yucatan Current, and Loop Current. The only exceptions were in two stations 207 
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containing swordfish larvae near the continental rise of the northwest Gulf of Mexico in 2012 208 

(Fig. 2c)  209 

Larger swordfish larvae (>6.5mm) were also generally caught in the Loop Current with 210 

small individuals (<6.5 mm) being more present near the Yucatan and Caribbean Currents (Fig. 211 

4). The exception was 2012 which showed small larvae near the southeastern extent of the Loop 212 

Current as it becomes the Florida Current. There were also three stations containing large 213 

swordfish larvae near Hispaniola in 2011.No significant correlation with latitude and standard 214 

length of swordfish was found (r=0.05, p=0.63). Smaller individuals were also present in the 215 

northern and western Loop Current in 2010 and 2011 while eastern extent of the Loop Current 216 

primarily contained larger larvae in these years.   217 

Model:  218 

Four hundred and eighty-six stations remained (62 stations containing swordfish larvae) 219 

after oxygen outliers, stations without CTD casts, and shelf waters were removed from the 220 

dataset for model formation (Fig. 2).  221 

Seven variables remained in the model after a backwards step-wise AIC model selection: 222 

temperature at 5 m, SSHA, EKE, fraction of lunar illumination, hour of sampling (local time), 223 

and an interaction between latitude and longitude (Table 2). Chlorophyll a residuals were also 224 

included as a random effect in the model as they reduced residual heterogeneity (Zurr et al., 225 

2009). This was because the smooth function of chlorophyll a residuals was not significant in the 226 

model, but did show collinearity when plotted against residuals of a GAM that did not include 227 

chlorophyll a residuals. 228 

 The final AIC for this model was 290.542 and the total deviance explained (DE) was 229 

33.1% (Table 3). The variables in order of greatest ∆AIC were longitude and latitude (∆AIC 230 
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=19.02, ∆DE=6.3%), percent lunar illumination (∆AIC =17.91, ∆DE=7.7%), temperature at five 231 

meters (∆AIC =13.65, ∆DE=9.7%), hour of sampling (∆AIC =9.58, ∆DE=2.0%), sea surface 232 

height anomaly (∆AIC =8.10, ∆DE=1.9%) and eddy kinetic energy (∆AIC =2.98, ∆DE=0.1%). 233 

The Akaike weight for the model selected in the final iteration was 0.780, which was strongly 234 

indicative of the best-fit model. The ROC curve for the final model indicated a strong predictive 235 

capability of the model within the dataset. The average AUC for 1000 runs was 0.865, a median 236 

AUC of 0.866, and a standard deviation of 0.047.  237 

Probability of swordfish presence increased as temperature increased from 24oC to 28oC 238 

with highest catch at surface temperatures of 28 o C (Fig. 5a). Probability of larval swordfish 239 

catch reached a maximum around 0.17 m SSHA with a near parabolic curve showing lowest 240 

probability around both low (-0.4 m) and high (0.6 m) SSHA (Fig. 5b). Probability of catch 241 

decreased as eddy kinetic energy increased, though the magnitude of additive effect was minimal 242 

(Fig. 5c). Fraction of lunar illumination displayed an uneven sinusoidal pattern with peak 243 

probability of catch occurring prior to gibbous (0.75 illumination) and crescent (0.25 244 

illumination) moons (Fig. 5d). Lowest probability of catch occurred during the quarter-moons 245 

(0.5 illumination). The response curve for hour of collection was significant, but showed little 246 

overall effect on probability of catch. Highest probability occurred between 1000-1500 local 247 

time (Fig. 5e). No significant relationship or pattern between fraction of lunar illumination and 248 

hour of sampling occurred, indicating that these parameters had independent effects on the catch 249 

of swordfish larvae.  250 

 251 

DISCUSSION:  252 
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This study shows a clear association between the presence of larval swordfish and the 253 

fast-moving currents in the western Caribbean Sea and Gulf of Mexico (Fig. 2). Our habitat 254 

models corroborate these findings with the highest probabilities of catching larvae at 255 

physicochemical values indicative of these current systems. Additionally, assessment of the 256 

standard length of larvae by region corroborates findings from previous catches of larval 257 

swordfish and mature adults that suggest there are likely multiple spawning locations south of 258 

the Gulf of Mexico near the Caribbean Current and Yucatan Channel, with possible spawning 259 

occurring in the northern and western extents of the Loop Current (Govoni et al., 2003; Arocha, 260 

2007; Rooker et al., 2012). These concepts have been documented before but this study expands 261 

our knowledge of the physicochemical parameters that constitute larval habitat throughout both 262 

the Gulf of Mexico and Caribbean Sea, differentiates the oceanographic features likely used for 263 

spawning by swordfish, indicates a connection between lunar illumination and swordfish 264 

spawning, and documents new locations and abundances of swordfish larvae throughout the 265 

western tropical North Atlantic.  266 

The response curve for temperature at 5 m supports this hypothesis, showing a higher 267 

additive effect with increasing temperature. This result suggests the presence of larvae in warm 268 

waters, a characteristic of the Loop Current (Domingues et al., 2016). These values were 269 

consistent with Rooker et al., (2012), which observed peak catch of swordfish larvae at 270 

temperatures around 28o C. However, their sampling occurred in the warmer months of June and 271 

July in the north central Gulf of Mexico, likely leading to the negative relationship observed 272 

between surface temperature and larval swordfish catch. The response curve for SSHA shows the 273 

highest probability of catch around 0.17 m, the same SSHA referenced as indicating the outer 274 

Loop Current boundary (Fig. 5b). This supports the hypothesis that the Loop Current is used as 275 
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larval habitat (Leben and Born, 1993; Berger et al., 1996; Hamilton et al., 2000; Leben et al., 276 

2002). This is inconsistent with the findings of Rooker et al., (2012) which found larval 277 

swordfish catch to be highest at negative sea surface height anomalies. However, in 2012 we 278 

observed swordfish larvae in northcentral Gulf of Mexico waters in waters with a negative sea 279 

surface height anomaly, yet near the Loop Current boundary (Fig. 6). Therefore, it is possible 280 

that the increased probability of larval swordfish catch Rooker et al., (2012) observed in the 281 

northern Gulf of Mexico is specific to this smaller region and is not consistent throughout the 282 

larger spatial extent of larval swordfish habitat. Further, Rooker et al., (2012) did show a 283 

negative relationship with distance from the Loop Current, suggesting that the Loop Current was 284 

important larval swordfish habitat, corroborating our findings (2012). Eddy kinetic energy (EKE) 285 

shows highest probability of catch, though minimal, near zero eddy kinetic energy (Fig. 5c). This 286 

would be the case in a water mass that exhibits very little meridional or zonal flow such as 287 

common water or fronts (Ducet and Le Traon, 2001). The fastest moving waters of boundary 288 

currents and eddies display higher EKE values, suggesting these regions may not represent larval 289 

swordfish habitat (Richardson, 2005). However, it is worth noting that the deviance explained by 290 

EKE was low (0.1%) and the significance of this parameter may have changed if we were able to 291 

incorporate more stations into model formation near the Yucatan Channel in 2010 (Table 3; Fig. 292 

2). 293 

 An overview of our sampling and modeling indicate that swordfish do not rely heavily 294 

on mesoscale eddies for spawning and larval habitat. Instead, swordfish larvae remain near and 295 

within large current systems, a significant development in understanding larval swordfish 296 

ecology. Mesoscale eddies were sampled during our collections and are common hydrographic 297 

features in the Gulf of Mexico and Caribbean Sea (Hurlburt and Thompson, 1982; Vukovich and 298 
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Maul, 1985; Carton and Chao, 1999). These eddies are often used for spawning and larval 299 

transport of pelagic fishes, such as bluefin tuna and billfishes (Richardson et al., 2009; Govoni et 300 

al., 2010; Muhling et al., 2010). Therefore, the use of large currents as opposed to mesoscale 301 

eddies for spawning and larval habitat by swordfish represents a life history strategy unique from 302 

other pelagic predatory fishes. These observed patterns of swordfish spawning near fast-moving 303 

currents are similar to the spawning patterns of swordfish in the Mediterranean, where swordfish 304 

spawn near areas with high current velocity such as the Straits of Messina (Megalofonou et al., 305 

1995; Relini et al., 2003). This suggests that spawning near fast-moving currents is a strategy 306 

that is not unique to the North Atlantic swordfish population.  307 

The warm temperatures of boundary currents can lead to increased growth rates for fish 308 

larvae, which is advantageous for outgrowing a larval stage with abundant predators (Bailey and 309 

Houde, 1989; Houde, 1989). However, to sustain fast growth rates in warm waters, larvae need 310 

ample prey. Boundaries associated with current systems represent convergence zones that 311 

concentrate fish larvae and zooplankton, the prey of swordfish larvae (Bakun, 2006). Thus, 312 

swordfish larvae may use the boundaries of major currents both for their warm waters and prey 313 

abundance (Fig. 6). Specifically, the Loop Current boundary contains large numbers of Oithona 314 

spp. copepods, a known prey item of pre-flexion swordfish larvae (Govoni et al., 2003; 315 

Rathmell, 2007). The presence of neustonic flyingfish (Exocoetidae) and subsurface tuna and 316 

mackerel (Scombridae) larvae may make these boundaries ideal habitat for swordfish larvae as 317 

they transition to piscivory (Arata, 1954; Gorbunova, 1969; Richards et al., 1993; Govoni et al., 318 

2003).  However, convergence zones often lead to increased predation pressure and may increase 319 

mortality of swordfish larvae, representing a trade-off between increased food availability and 320 

predation (Bakun, 2006).   321 
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Further, small larvae (< 6 mm SL) were primarily caught north of Honduras, in the 322 

Yucatan Channel, and the northern and western extents of the Loop Current, with larger larvae 323 

(> 6 mm SL) occurring on the eastern side of the Loop Current (Fig. 4). However, there was a 324 

great degree of variability in this trend, suggesting that there are multiple spawning locations 325 

throughout the region including the near the Caribbean Current, Yucatan Channel, and the Gulf 326 

of Mexico, corroborating suggestions of these spawning locations from previous studies 327 

(Arocha, 1997; Govoni et al., 2003; Arocha, 2007).  The general trend of presence of swordfish 328 

larvae in the fast-moving boundary currents and larger larvae occurring in the eastern extent of 329 

the Loop Current supports the assertion that these boundary currents provide a means to transport 330 

larvae further along the western boundary current system of the Atlantic. Data from the NOAA 331 

Pelagic Observer Program indicate that the northern Gulf of Mexico and coastal Atlantic waters 332 

of the southeastern United States are predominately occupied by juvenile swordfish (80-130 cm; 333 

Muhling et al., 2015). Multiple studies have also indicated that the northern Gulf of Mexico and 334 

the waters off the southeastern United States, particularly the Charleston Bump, represent 335 

juvenile habitat (Cramer, 2001; Govoni et al., 2003). These boundary currents can thus serve a 336 

dual purpose as habitat for swordfish larvae and a mechanism to transport larvae toward their 337 

juvenile habitat.  338 

Transport of swordfish larvae to juvenile habitat from spawning in or near fast-moving 339 

boundary currents well fits the member vagrant hypothesis as larvae spawned in varying 340 

locations throughout the Caribbean, Gulf of Mexico, and Straits of Florida will likely be 341 

transported to similar locations to begin the later stages of development (Sinclair, 1988). 342 

However, swordfish in the North Atlantic are still genetically identified as one population, thus 343 

the boundary currents alone do not represent a complete closure of this population because North 344 
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Atlantic swordfish also spawn south of the Sargasso Sea which likely transports larvae to 345 

additional juvenile habitat in the southeastern Caribbean (Arocha, 1997; Bremer et al., 2005; 346 

Arocha, 2007). Swordfish which spawn near these boundary currents and those that spawn in the 347 

Sargasso Sea are considered different spawning groups and mixing among the two spawning 348 

groups may not occur until the fish move farther north to adult foraging grounds (Arocha, 2007).  349 

Furthermore, adult swordfish need to be able to detect these boundary currents while they 350 

are at their day-time depths (up to 900 m) to ensure they remain in proximity to preferred 351 

spawning locations. These fish may be able to remain near the western boundary current system 352 

through sensing temperature gradients both near the surface and at depth (Podesta et al., 1993; 353 

Sheinbaum et al., 2002; Carrillo et al., 2016). Therefore, large current regimes, such as the 354 

Yucatan Current, may represent as spatially stable and easily identifiable region for swordfish to 355 

spawn. Fecund swordfish and swordfish eggs are often caught near these boundary currents, 356 

particularly those of the Yucatan Current, furthering evidence that these boundaries represent 357 

spawning habitat (Arocha, 1997; 2007; Leyva-Cruz et al., 2016). Small swordfish larvae were 358 

caught within the boundary currents in multiple regions and the size of swordfish larvae also 359 

tends to increase as they are further downstream in the boundary current systems, supporting the 360 

assertion that these boundary currents are important oceanographic features for swordfish 361 

spawning. While presence of larvae in these boundaries does not directly translate to adult 362 

swordfish presence, the presence of swordfish eggs and catches of fecund adult swordfish 363 

suggest these current boundaries are important for both swordfish spawning and larval habitat.  364 

The relationship between catchability of swordfish larvae and fraction of lunar 365 

illumination suggest a connection between the lunar phase and time of spawning of swordfish. 366 

Highest catchability of small (65% of larvae <6 mm SL) swordfish larvae occurred during 367 
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crescent and gibbous moon phases. The high catches of larvae during crescent and gibbous 368 

moons could be a result of spawning during the quarter moon phases given an estimate of three 369 

days prior to hatching and the subsequent growth rate of swordfish larvae (Yasuda et al., 1978; 370 

Enfield and Mayer, 1997; Govoni et al., 2003). Multiple reports show catch per unit effort 371 

(CPUE) increases for the swordfish fishery around first and third quarter moon phases, possibly 372 

indicative of spawning as CPUE is often highest for fisheries during spawning (dos Santos and 373 

Garcia, 2005; Yukami et al., 2009; Poisson et al., 2010; Erisman et al., 2011). The strong 374 

correlation of night time depth of adult swordfish with lunar illumination supports the hypothesis 375 

that the lunar cycle influences the behavior of swordfish (Dewar et al., 2011; Lerner et al., 376 

2013). While the exact spawning time of swordfish is uncertain, our data reveal the importance 377 

of lunar illumination for the spawning of swordfish for the first time.  378 

The peak in larval swordfish catch at noon was consistent with observations from Habtes 379 

et al. (2014; Fig. 5e). Diel variability in catch of ichthyoplankton in surface water is often due to 380 

diel vertical migration of ichthyoplankton. However, the diet of swordfish larvae suggests a 381 

shallow water existence as young larvae consume neritic copepods and larger larvae are 382 

piscivorous, suggesting a neustonic lifestyle (Arata, 1954; Gorbunova, 1969; Govoni et al., 383 

2003). Thus, while it is difficult to elucidate a reason for the diel trend in larval swordfish catch, 384 

the literature suggests that large scale vertical migrations are unlikely and our results may be an 385 

artifact of sampling otherwise favorable habitat at these hours.  386 

Mapping and habitat models from this study corroborate previous work indicating that 387 

there are oceanographic features throughout the Gulf of Mexico and western Caribbean Sea that 388 

serve as favorable habitat for swordfish larvae. Future work to better understand the habitat 389 

associations of swordfish larvae should focus on sampling multiple oceanographic features to 390 
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attain better knowledge of their larval distribution throughout the Caribbean Current, Yucatan 391 

Current, and Loop Current. Obtaining finer resolution data on the exact water masses and fronts 392 

utilized by these fish for spawning and larval habitat can be used to protect regions from fishing 393 

pressure and shipping disturbance to assist the reproductive success of these fish. However, 394 

intra-annual variability of swordfish spawning needs to be assessed, thus sampling should occur 395 

January through July with a focus on both eggs and larvae in order to elucidate this variation 396 

(Govoni et al., 2003; Rooker et al., 2012; Neilson et al., 2014). Habitat models may also be 397 

constructed through different methodologies to incorporate historical data from SEAMAP and 398 

Marine Resources Monitoring, Assessment, and Prediction program (MARMAP) data sets but 399 

these must be done carefully to ensure the physical parameters are accurate and precise. The 400 

years of sampling in this study (2010-2012) also occurred at a time of low abundance in the 401 

North Atlantic swordfish stock, though recovery of the stock was likely occurring (ICCAT, 402 

2014). Future studies should assess how and if habitat models of larvae may change as the stock 403 

size fluctuates and if the quantity of favorable habitat as predicted by these models relates to 404 

recruitment of this stock.  405 

 We present new developments in the understanding of the early life history of swordfish. 406 

This study supports and expands the spatial extent of the existing hypothesis that larval 407 

swordfish habitat is associated with boundary currents in the western Caribbean Sea and Gulf of 408 

Mexico, primarily the Caribbean, Yucatan, and Loop Currents and that these currents may 409 

provide a means to transport swordfish larvae toward larval and juvenile habitats. Assessment of 410 

the standard length of larvae caught throughout the sampling region indicated that multiple 411 

spawning locations likely occur, with small larvae caught north of Honduras, the Yucatan 412 

Channel, and in the north central Gulf of Mexico in northern and western extents of the Loop 413 
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current. We also indicate a connection between lunar illumination and swordfish spawning, the 414 

first assertion of such a connection to our knowledge. While higher resolution data should be 415 

used to further identify smaller scale associations of swordfish larvae with oceanographic 416 

features, the identification of larval habitat from this study is a step toward an improved 417 

understanding of this commercially and ecologically important species. This study provides 418 

valuable information about the larval habitat of a commercially important species so that 419 

estimations of anthropogenic influences on larval habitat can be made, including severely 420 

deleterious events such as oil spills.  421 

 422 
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TABLES: 

Table 1: Environmental parameters used in model formation with sources and metrics listed. All 
in-situ data were collected using a Seabird SBE 9/11 Plus CTD (conductivity, temperature, and 
depth) equipped with a dissolved oxygen sensor (SBE 43). 

Parameter Source  Minimum Maximum Mean  Median  
Eddy Kinetic Energy (m2 s-2) HYCOM  0.00 1.54 0.14 0.06 

Sea Surface Height Anomaly (m) HYCOM -0.45 0.64 -0.09 -0.19 

Temperature at 5 m (oC) In-situ 21.45 28.35 26.39 26.66 

Salinity at 5 m In-situ 33.04 36.70 36.04 36.02 

Oxygen at 5 m (mg L-1) In-situ 6.13 7.46 6.60 6.61 

Chlorophyll a (mg m-3) MODIS 0.04 0.57 0.11 0.10 

Depth (m) NCEI 204.00 7124.00 2177.24 2140.50 
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Table 2: Details of the backward stepwise Akaike Information Criterion (∆AIC) model selection process 
including the original model and the subsequent top three models for each iteration as determined by greatest 
change in AIC and deviance explained. The overall best fit model for the final iteration is in bold. ORT 
represents oxygen residuals from temperature. CRT (RE) represents chlorophyll a residuals from temperature as 
a random effect.
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Iteration Variables Included  AIC (∆) DE (∆) Akaike Weight(wi) 

1 Temperature, ORT, CRT (RE), SSHA, EKE, Lun Illum, Salinity, Hour, Depth, Year, Long/Lat(TE) 296.33 (0) 33.6(0) 0.126 

1 Temperature, ORT, CRT (RE), SSHA, EKE, Lun Illum, Salinity, Hour, Depth, Long/Lat(TE)  295.04(-1.29) 33.1(-0.5) 0.228 

1 Temperature, CRT (RE), SSHA, EKE, Lun Illum, Salinity, Hour, Depth, Year, Long/Lat(TE)  294.61(-1.72) 33.2(-0.3) 0.282 

1 Temperature, ORT, CRT (RE), SSHA, EKE, Lun Illum, Hour, Depth, Year, Long/Lat(TE)  294.53(-1.80) 33.5(-0.1) 0.294 

2 Temperature, ORT, CRT (RE), SSHA, EKE, Lun Illum, Hour, Depth Year, Long/Lat(TE) 294.53(-1.80) 33.5(-0.1) 0.173 

2 Temperature, ORT, CRT (RE), SSHA, EKE, Lun Illum, Salinity, Hour, Year, Long/Lat(TE) 296.54(0.210) 30.5(-3.1) 0.063 

2 Temperature, ORT, CRT (RE), SSHA, EKE, Lun Illum, Hour, Depth, Long/Lat(TE) 293.43(-2.89) 33(-0.6) 0.299 

2 Temperature, CRT (RE), SSHA, EKE, Lun Illum, Hour, Depth, Year, Long/Lat(TE) 292.74(-3.58) 33.2(-0.3) 0.423 

3 Temperature, CRT (RE), SSHA, EKE, Lun Illum, Hour, Depth, Year, Long/Lat(TE) 292.74(-3.58) 33.2(-0.3) 0.217 

3 Temperature, CRT (RE), SSHA, Lun Illum, Hour, Depth, Year, Long/Lat(TE) 296.66(0.330) 29.4(-4.2) 0.008 

3 Temperature, CRT (RE) SSHA, EKE, Lun Illum, Salinity, Hour, Depth, Long/Lat(TE) 292.1(-4.22) 33.1(-0.5) 0.298 

3 Temperature, CRT (RE), SSHA, EKE, Lun Illum, Hour, Year, Long/Lat(TE) 291.31(-5.01) 33.1(-0.5) 0.443 

4 Temperature, CRT (RE), SSHA, EKE, Lun Illum,, Hour, Year, Long/Lat(TE) 291.31(-5.01) 33.1(-0.5) 0.380 

4 Temperature, CRT (RE), EKE, Lun Illum, Hour, Year, Long/Lat(TE) 298(1.670) 30(-3.6) 0.013 

4 Temperature, CRT (RE), SSHA, Lun Illum, Hour, Year, Long/Lat(TE) 295.93(-0.39) 29.4(-4.2) 0.038 

4 Temperature, CRT (RE), SSHA, EKE, Lun Illum, Hour, Long/Lat(TE) 290.54(-5.78) 33.1(-0.5) 0.558 

5 Temperature, CRT (RE), SSHA, EKE, Lun Illum, Hour, Long/Lat(TE) 290.54(-5.78) 33.1(-0.5) 0.780 

5 Temperature, SSHA, EKE, Lun Illum, Hour, Long/Lat(TE) 298.64(2.31) 30.6(-3) 0.010 

5 Temperature, CRT (RE), EKE, Lun Illum, Hour, Long/Lat(TE) 299.3(2.970) 29.2(-4.4) 0.014 

5 Temperature, CRT (RE), SSHA, Lun Illum, Hour, Long/Lat(TE) 293.52(-2.81) 33.6(0) 0.176 
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Table 3: Change in Akaike Information Criterion (∆AIC) and deviance explained (∆DE) for 
environmental and spatial parameters in the final model.  

Final Model  Variable  ∆ AIC ∆DE 

    AIC: 290.542 
 

DE: 33.1% 

Hour of Sampling 19.02 6.3% 

Fraction of Lunar Illumination 17.91 7.7% 

Latitude, Longitude 13.65 9.7% 

Temperature at 5 m (oC) 9.58 2.0% 

Sea Surface Height Anomaly (m) 8.10 1.9% 

Eddy Kinetic Energy (m2 s-2) 2.98 0.1% 
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FIGURE LEGENDS: 

 

Figure 1: Schematic map of the Gulf of Mexico and Caribbean Sea showing the major ocean 
currents. Colors depict mean sea surface temperature estimates from the Hybrid Ocean 
Coordinate Model (HYCOM) 1/12o Reanalysis from April and May of 2010.  

Figure 2: Distribution of sampling locations in the Gulf of Mexico and Caribbean in April-May 
a)2010 b)2011 and c)2012. Red symbols (+) indicate stations sampled and were used as model 
input. Black symbols (+) indicate stations sampled and were not used as model input due to 
sensor malfunctions and their shallow bathymetry (< 200 m depth). Red circles ● indicate 
stations that showed presence of swordfish larvae and were used as model input. Black circles ● 
indicate stations that showed presence of swordfish larvae and were not used as model input due 
to sensor malfunctions, lack of CTD casts, or their shallow bathymetry (< 200 m depth). Color 
scale indicative of sea surface temperature (SST). 
 
Figure 3: Correlations between A) chlorophyll- a and temperature at 5 m (r=-0.49, p<0.01 and 
B) dissolved oxygen at 5 m and temperature at 5 m (r=-0.74, p<0.01). 
 
Figure 4: Mean standard length of swordfish larvae by station caught in both neuston and S-10 
nets from 2010-2012. Color scale indicative of sea surface temperature (SST). 
 
Figure 5: The response curves for a) temperature at 5m (oC), b) sea surface height anomaly (m), 
c) eddy kinetic energy (m2 s-2), d) fraction of lunar illumination with the dark circle indicating 
the new moon and the open circle representing the full moon, and e) hour of sampling, with the 
open circle indicating local noon.  

Figure 6: Catch of swordfish larvae in the Loop Current in 2012 overlaid on sea surface height 
anomaly (m). Red circles (●) indicate stations that showed presence of swordfish larvae. 
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Figure 1: Schematic map of the Gulf of Mexico and Caribbean Sea showing the major ocean currents. Colors 
depict mean sea surface temperature estimates from the Hybrid Ocean Coordinate Model (HYCOM) 1/12o 

Reanalysis from April and May of 2010.  
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Figure 2: Distribution of sampling locations in the Gulf of Mexico and Caribbean in April-May a)2010 b)2011 
and c)2012. Red symbols (+) indicate stations sampled and were used as model input. Black symbols (+) 
indicate stations sampled and were not used as model input due to sensor malfunctions and their shallow 
bathymetry (< 200 m depth). Red circles ● indicate stations that showed presence of swordfish larvae and 
were used as model input. Black circles ● indicate stations that showed presence of swordfish larvae and 

were not used as model input due to sensor malfunctions, lack of CTD casts, or their shallow bathymetry (< 
200 m depth). Color scale indicative of sea surface temperature (SST).  
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Figure 3: Correlations between A) chlorophyll- a and temperature at 5 m (r=-0.49, p<0.01 and B) dissolved 
oxygen at 5 m and temperature at 5 m (r=-0.74, p<0.01).  
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Figure 4: Mean standard length of swordfish larvae by station caught in both neuston and S-10 nets from 
2010-2012. Color scale indicative of sea surface temperature (SST).  
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Figure 5: The response curves for a) temperature at 5m (oC), b) sea surface height anomaly (m), c) eddy 
kinetic energy (m2 s-2), d) fraction of lunar illumination with the dark circle indicating the new moon and 
the open circle representing the full moon, and e) hour of sampling, with the open circle indicating local 

noon.  
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Figure 6: Catch of swordfish larvae in the Loop Current in 2012 overlaid on sea surface height anomaly (m). 
Red circles (●) indicate stations that showed presence of swordfish larvae.  
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Supp. Table 1: Standard length, time, and location of swordfish larvae used in this study. N 
represents number of swordfish larvae caught by the S-10 and neuston net at each station.  
 

Cruise Date Latitude Longitude Gear N Standard Length (mm) 
GU1001 4/10/2010 20.7711 -86.5233 S-10 5 7.32-10.56 
GU1001 4/10/2010 20.7773 -86.3936 S-10 2 4.73-6.78 
GU1001 4/10/2010 20.9998 -86.6358 Neuston 1 6.66 
GU1001 4/10/2010 21.0061 -86.004 S-10 3 3.54-6.31 
GU1001 4/10/2010 21.0061 -86.004 Neuston 1 5.55 
GU1001 4/10/2010 21.0071 -86.529 S-10 3 4-6.1 
GU1001 4/11/2010 21.4841 -86.2376 S-10 1 6.01 
GU1001 4/11/2010 21.4986 -85.9988 Neuston 1 8.07 
GU1001 4/11/2010 21.7298 -86.2341 S-10 1 4.27 
GU1001 4/11/2010 21.9985 -86.511 S-10 2 4.57-11.51 
GU1001 4/12/2010 23.2012 -87.1788 S-10 1 4.3 
GU1001 4/13/2010 23.4192 -87.3669 S-10 3 4.68-5.48 
GU1001 4/13/2010 23.5531 -87.458 S-10 2 6.57-11.26 
GU1001 4/28/2010 25.4893 -85.998 S-10 1 5.82 
GU1001 4/28/2010 25.4926 -86.446 S-10 1 10.95 
GU1001 4/29/2010 24.4922 -85.9979 S-10 2 3.72-25.68 
GU1001 4/29/2010 24.9881 -84.9955 Neuston 1 10.05 
GU1001 4/8/2010 19.994 -87.2475 S-10 3 4.77-11.28 
GU1001 4/8/2010 20.0641 -87.1886 Neuston 17 2.86-6.72 
GU1001 4/8/2010 20.1165 -87.0748 S-10 2 9.39-11.95 
GU1001 4/8/2010 20.1693 -86.9623 S-10 5 3.55-4.4 
GU1001 4/9/2010 20.2411 -86.8641 S-10 1 4.12 
GU1001 4/9/2010 20.5005 -86.7161 S-10 2 3.81 
GU1001 4/9/2010 20.5023 -85.8713 S-10 2 3.88-6.67 
GU1001 4/9/2010 20.5105 -85.4938 S-10 2 3.64-3.89 
GU1001 5/12/2010 26.0054 -87.5019 S-10 1 3.87 
GU1001 5/12/2010 26.0148 -87.994 S-10 2 2.08-2.87 
GU1001 5/12/2010 26.2829 -86.9944 S-10 2 2.8-3.12 
GU1001 5/12/2010 26.501 -87.0005 S-10 3 3.78-4.32 
GU1001 5/13/2010 26.5063 -87.9937 S-10 1 2.96 
GU1001 5/22/2010 26.0029 -88.9991 S-10 1 4.11 
GU1101 3/31/2011 18.8942 -78.2623 S-10 1 6.5 
GU1101 4/1/2011 18.7633 -74.9499 S-10 1 3.9 
GU1101 4/16/2011 16.975 -84.4886 S-10 3 4.2-5.1 
GU1101 4/16/2011 17.118 -84.3708 S-10 1 6.9 
GU1101 4/17/2011 16.9395 -85.2278 S-10 1 5.4 
GU1101 4/19/2011 16.83 -87.0612 S-10 1 4 
GU1101 4/19/2011 17.2533 -86.4111 S-10 1 6.46 
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For Peer Review

Cruise Date Latitude Longitude Gear N Standard Length (mm) 
GU1101 4/19/2011 17.2533 -86.4111 Neuston 1 6.29 
GU1101 4/21/2011 18.8438 -86.8526 S-10 2 5.6-8.9 
GU1101 4/21/2011 18.8438 -86.8526 Neuston 1 7.6 
GU1101 4/23/2011 20.0735 -86.1522 S-10 1 6.9 
GU1101 4/23/2011 20.2111 -87.1356 S-10 1 7.9 
GU1101 4/24/2011 21.0748 -86.1676 Neuston 1 13 
GU1101 4/25/2011 20.4113 -87.1545 S-10 1 6.25 
GU1101 4/25/2011 20.4113 -87.1545 Neuston 2 3.25-8 
GU1101 4/25/2011 20.4343 -87.0401 S-10 1 17.5 
GU1101 4/25/2011 20.4933 -87.0773 S-10 3 6.7-11.87 
GU1101 4/3/2011 17.7941 -75.4387 S-10 1 10 
GU1101 4/3/2011 18.1151 -74.99 S-10 1 9.5 
GU1101 4/3/2011 18.5355 -74.9028 Neuston 1 10.7 
GU1101 4/5/2011 18.8322 -78.0036 S-10 1 4.8 
GU1101 4/5/2011 18.9693 -77.7284 Neuston 1 3.4 
GU1101 4/6/2011 18.1357 -79.8196 Neuston 1 6.2 
GU1101 5/15/2011 28.009 -89.0103 S-10 1 23.1 
GU1101 5/22/2011 26.5008 -90.999 S-10 1 8.37 
GU1101 5/23/2011 25.9993 -89.3346 S-10 1 3.79 
GU1101 5/24/2011 26.0165 -88.9946 S-10 1 3.84 
GU1101 5/25/2011 25.9875 -87.498 S-10 3 4.95-8.82 
GU1101 5/25/2011 26.2705 -87.0073 S-10 12 3.25-6.99 
GU1101 5/25/2011 26.489 -86.9971 S-10 3 6.76-11.86 
GU1101 5/25/2011 26.489 -86.9971 Neuston 1 5.32 
GU1101 5/26/2011 26.9955 -86.992 S-10 12 3.44-9.32 
GU1101 5/26/2011 26.9955 -86.992 Neuston 7 6.73-13.94 
GU1101 5/26/2011 27.7516 -87.0018 S-10 1 9.42 
GU1101 5/27/2011 28.826 -87.0031 S-10 1 6.02 
GU1101 5/3/2011 23.9987 -83.4882 S-10 2 4.85-10.71 
GU1101 5/4/2011 24.5111 -83.986 Neuston 1 8.09 
GU1101 5/5/2011 24.9918 -85.5051 S-10 1 8.7 
GU1101 5/5/2011 24.9925 -85.0026 S-10 3 6.04-13.02 
GU1101 5/8/2011 27.5095 -86.994 S-10 1 4.88 
GU1201 4/30/2012 24.986 -85.5063 S-10 8 4.37-9.8 
GU1201 4/30/2012 24.9925 -85.0145 S-10 1 4.74 
GU1201 5/1/2012 24.0006 -83.9836 S-10 1 4.07 
GU1201 5/1/2012 24.5016 -84.4856 S-10 1 5.82 
GU1201 5/17/2012 26.9988 -88.4993 S-10 2 2.79-3.64 
GU1201 5/2/2012 23.9906 -83.4855 S-10 1 6.09 
GU1201 5/22/2012 26.0206 -95.0118 S-10 1 4.87 
GU1201 5/22/2012 26.0206 -95.0118 Neuston 1 4.19 
GU1201 5/26/2012 26.9991 -88.4921 S-10 1 4.76 
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For Peer Review

Cruise Date Latitude Longitude Gear N Standard Length (mm) 
GU1201 5/26/2012 27.1701 -88.254 S-10 2 3.62-3.93 
GU1201 5/3/2012 25.9948 -84.9971 S-10 2 4.54-7.96 
GU1201 5/3/2012 26.0026 -84.5 S-10 1 8.05 
GU1201 5/3/2012 26.4983 -84.9938 S-10 1 16.52 
GU1201 5/3/2012 26.4983 -84.9938 Neuston 1 5.15 
GU1201 5/3/2012 27.0031 -84.9968 S-10 2 7.12-7.73 
GU1201 5/3/2012 27.0031 -84.9968 Neuston 1 9.59 
GU1201 5/5/2012 27.506 -86.005 Neuston 1 11.44 
GU1201 5/5/2012 28.5051 -86.0021 S-10 1 4.55 
GU1201 5/6/2012 24.9853 -86.0033 S-10 5 3.22-5.07 
GU1201 5/6/2012 24.9853 -86.0033 Neuston 1 8.9 
GU1201 5/6/2012 26.0016 -86.0136 Neuston 1 12.47 
GU1201 5/7/2012 26.0066 -87.4911 S-10 1 8.37 
GU1201 5/9/2012 27.4965 -86.9958 S-10 1 7.69 
GU1201 5/9/2012 27.4965 -86.9958 Neuston 3 5.03-6.79 
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