52 research outputs found

    Blue Boogie / words by John W. Schaum

    Get PDF
    Cover: caricature of an African American male face; Publisher: Belwin (New York)https://egrove.olemiss.edu/sharris_e/1067/thumbnail.jp

    Short\u27nin\u27 Bread

    Get PDF
    Shortening bread on oven doorhttps://scholarsjunction.msstate.edu/cht-sheet-music/12254/thumbnail.jp

    Ride Rancer Ride

    Get PDF
    Cowboy riding horse through deserthttps://scholarsjunction.msstate.edu/cht-sheet-music/12503/thumbnail.jp

    The Boogie Man.

    Get PDF
    Text and music noteshttps://scholarsjunction.msstate.edu/cht-sheet-music/10943/thumbnail.jp

    Evolutionary temperature compensation of carbon fixation in marine phytoplankton

    Get PDF
    The efficiency of carbon sequestration by the biological pump could decline in the coming decades because respiration tends to increase more with temperature than photosynthesis. Despite these differences in the short-term temperature sensitivities of photosynthesis and respiration, it remains unknown whether the long-term impacts of global warming on metabolic rates of phytoplankton can be modulated by evolutionary adaptation. We found that respiration was consistently more temperature dependent than photosynthesis across 18 diverse marine phytoplankton, resulting in universal declines in the rate of carbon fixation with short-term increases in temperature. Long-term experimental evolution under high temperature reversed the short-term stimulation of metabolic rates, resulting in increased rates of carbon fixation. Our findings suggest that thermal adaptation may therefore have an ameliorating impact on the efficiency of phytoplankton as primary mediators of the biological carbon pump

    The hidden flows within species: Phytoplankton population dynamics in Arctic assemblages

    Get PDF
    Progressing climate change and concurrent alterations of environmental conditions pose challenges of adaptation on organisms and ecosystems, especially in rapidly changing places like the Arctic. While more diverse systems are usually considered to be more resilient, biodiversity does not only describe the number of species, but can also consist of diverse individuals within a species. Especially in protists, with large census sizes and fast proliferation, intraspecific lineage sorting can be an important mechanism of plasticity and trait adjustment. For phytoplankton communities at the base of the foodweb, physiological acclimation and species shifts are frequently described, but intraspecific composition and diversity are methodologically still difficult to resolve, especially in diverse natural contexts and at temporal resolution. Therefore, our knowledge on the functioning and importance of intraspecific selection dynamics in phytoplankton is still limited. In recent years, we have developed and applied a new, high throughput methodology for phytoplankton population composition, which can make temporal and spatial population dynamics visible that were before extremely difficult to resolve. Next to experiments with natural phytoplankton communities and artificial populations under controlled settings, a time-series of Arctic spring blooms has been investigated towards the year-to year composition of species but also of intraspecific populations of a dominant diatom. Datasets emerging now thanks to such novel technologies can offer new, more comprehensive perspectives on our understanding of the mechanisms and results of microevolution and local adaptation, and can reveal formerly hidden patterns of species’ strategies of persistence and development

    Resilience and adaptive mechanisms of Arctic phytoplankton under heatwaves: Acclimation, microevolution and community resilience

    Get PDF
    Trait adjustments of phytoplankton communities to changing environmental conditions can take place through responses on several fundamental ecological levels. These include physiological acclimation of single genotypes, evolution through sorting among genotypes of the same species, and selection within the entire multi-species community. Which of these different levels responds to environmental change can have large ecological and biogeochemical implications, but especially in protists, these levels are extremely difficult to disentangle. Arctic phytoplankton at base of the foodweb in one of the most rapidly warming regions on the planet, are faced with especially large changes, but often show high resilience. Among these changes are more frequent and intense heatwaves, which expose organisms to vast temperature fluctuations. In dedicated experimental setups of different ecological complexity, we investigated how phytoplankton responds and adjusts to heatwaves, and on which of the mentioned levels shifts can be observed. We resolved not only physiological features and productivity, but also composition on the species as well as the intraspecific level, using a novel molecular approach to efficiently examine the composition of protist populations in diverse contexts. This setup provides a comprehensive approach to investigate how phytoplankton communities respond to stable and fluctuating temperature scenarios, physiologically and ecologically

    Severe Asthma Standard-of-Care Background Medication Reduction With Benralizumab: ANDHI in Practice Substudy

    Get PDF
    Background: The phase IIIb, randomized, parallel-group, placebo-controlled ANDHI double-blind (DB) study extended understanding of the efficacy of benralizumab for patients with severe eosinophilic asthma. Patients from ANDHI DB could join the 56-week ANDHI in Practice (IP) single-arm, open-label extension substudy. Objective: Assess potential for standard-of-care background medication reductions while maintaining asthma control with benralizumab. Methods: Following ANDHI DB completion, eligible adults were enrolled in ANDHI IP. After an 8-week run-in with benralizumab, there were 5 visits to potentially reduce background asthma medications for patients achieving and maintaining protocol-defined asthma control with benralizumab. Main outcome measures for non-oral corticosteroid (OCS)-dependent patients were the proportions with at least 1 background medication reduction (ie, lower inhaled corticosteroid dose, background medication discontinuation) and the number of adapted Global Initiative for Asthma (GINA) step reductions at end of treatment (EOT). Main outcomes for OCS-dependent patients were reductions in daily OCS dosage and proportion achieving OCS dosage of 5 mg or lower at EOT. Results: For non-OCS-dependent patients, 53.3% (n = 208 of 390) achieved at least 1 background medication reduction, increasing to 72.6% (n = 130 of 179) for patients who maintained protocol-defined asthma control at EOT. A total of 41.9% (n = 163 of 389) achieved at least 1 adapted GINA step reduction, increasing to 61.8% (n = 110 of 178) for patients with protocol-defined EOT asthma control. At ANDHI IP baseline, OCS dosages were 5 mg or lower for 40.4% (n = 40 of 99) of OCS-dependent patients. Of OCS-dependent patients, 50.5% (n = 50 of 99) eliminated OCS and 74.7% (n = 74 of 99) achieved dosages of 5 mg or lower at EOT. Conclusions: These findings demonstrate benralizumab's ability to improve asthma control, thereby allowing background medication reduction

    Southern Accent

    Get PDF
    Illustration of man playing fiddle; Border of fiddles and leaveshttps://scholarsjunction.msstate.edu/cht-sheet-music/12811/thumbnail.jp
    • …
    corecore