249 research outputs found

    A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic

    Get PDF
    Global deep‐time plate motion models have traditionally followed a classical rigid plate approach, even though plate deformation is known to be significant. Here we present a global Mesozoic–Cenozoic deforming plate motion model that captures the progressive extension of all continental margins since the initiation of rifting within Pangea at ~240 Ma. The model also includes major failed continental rifts and compressional deformation along collision zones. The outlines and timing of regional deformation episodes are reconstructed from a wealth of published regional tectonic models and associated geological and geophysical data. We reconstruct absolute plate motions in a mantle reference frame with a joint global inversion using hot spot tracks for the last 80 million years and minimizing global trench migration velocities and net lithospheric rotation. In our optimized model, net rotation is consistently below 0.2°/Myr, and trench migration scatter is substantially reduced. Distributed plate deformation reaches a Mesozoic peak of 30 × 106 km2 in the Late Jurassic (~160–155 Ma), driven by a vast network of rift systems. After a mid‐Cretaceous drop in deformation, it reaches a high of 48 x 106 km2 in the Late Eocene (~35 Ma), driven by the progressive growth of plate collisions and the formation of new rift systems. About a third of the continental crustal area has been deformed since 240 Ma, partitioned roughly into 65% extension and 35% compression. This community plate model provides a framework for building detailed regional deforming plate networks and form a constraint for models of basin evolution and the plate‐mantle system

    A tectonic-rules-based mantle reference frame since 1 billion years ago - implications for supercontinent cycles and plate-mantle system evolution

    Get PDF
    Understanding the long-term evolution of Earth\u27s plate-mantle system is reliant on absolute plate motion models in a mantle reference frame, but such models are both difficult to construct and controversial. We present a tectonic-rules-based optimization approach to construct a plate motion model in a mantle reference frame covering the last billion years and use it as a constraint for mantle flow models. Our plate motion model results in net lithospheric rotation consistently below 0.25g g€Myr-1, in agreement with mantle flow models, while trench motions are confined to a relatively narrow range of -2 to +2g€cmg€yr-1 since 320g€Ma, during Pangea stability and dispersal. In contrast, the period from 600 to 320g€Ma, nicknamed the zippy tricentenary here, displays twice the trench motion scatter compared to more recent times, reflecting a predominance of short and highly mobile subduction zones. Our model supports an orthoversion evolution from Rodinia to Pangea with Pangea offset approximately 90g eastwards relative to Rodinia - this is the opposite sense of motion compared to a previous orthoversion hypothesis based on paleomagnetic data. In our coupled plate-mantle model a broad network of basal mantle ridges forms between 1000 and 600g€Ma, reflecting widely distributed subduction zones. Between 600 and 500g€Ma a short-lived degree-2 basal mantle structure forms in response to a band of subduction zones confined to low latitudes, generating extensive antipodal lower mantle upwellings centred at the poles. Subsequently, the northern basal structure migrates southward and evolves into a Pacific-centred upwelling, while the southern structure is dissected by subducting slabs, disintegrating into a network of ridges between 500 and 400g€Ma. From 400 to 200g€Ma, a stable Pacific-centred degree-1 convective planform emerges. It lacks an antipodal counterpart due to the closure of the Iapetus and Rheic oceans between Laurussia and Gondwana as well as due to coeval subduction between Baltica and Laurentia and around Siberia, populating the mantle with slabs until 320g€Ma when Pangea is assembled. A basal degree-2 structure forms subsequent to Pangea breakup, after the influence of previously subducted slabs in the African hemisphere on the lowermost mantle structure has faded away. This succession of mantle states is distinct from previously proposed mantle convection models. We show that the history of plume-related volcanism is consistent with deep plumes associated with evolving basal mantle structures. This Solid Earth Evolution Model for the last 1000 million years (SEEM1000) forms the foundation for a multitude of spatio-temporal data analysis approaches

    GPlates – Building a Virtual Earth Through Deep Time

    Get PDF
    GPlates is an open‐source, cross‐platform plate tectonic geographic information system, enabling the interactive manipulation of plate‐tectonic reconstructions and the visualization of geodata through geological time. GPlates allows the building of topological plate models representing the mosaic of evolving plate boundary networks through time, useful for computing plate velocity fields as surface boundary conditions for mantle convection models and for investigating physical and chemical exchanges of material between the surface and the deep Earth along tectonic plate boundaries. The ability of GPlates to visualize subsurface 3‐D scalar fields together with traditional geological surface data enables researchers to analyze their relationships through geological time in a common plate tectonic reference frame. To achieve this, a hierarchical cube map framework is used for rendering reconstructed surface raster data to support the rendering of subsurface 3‐D scalar fields using graphics‐hardware‐accelerated ray‐tracing techniques. GPlates enables the construction of plate deformation zones—regions combining extension, compression, and shearing that accommodate the relative motion between rigid blocks. Users can explore how strain rates, stretching/shortening factors, and crustal thickness evolve through space and time and interactively update the kinematics associated with deformation. Where data sets described by geometries (points, lines, or polygons) fall within deformation regions, the deformation can be applied to these geometries. Together, these tools allow users to build virtual Earth models that quantitatively describe continental assembly, fragmentation and dispersal and are interoperable with many other mapping and modeling tools, enabling applications in tectonics, geodynamics, basin evolution, orogenesis, deep Earth resource exploration, paleobiology, paleoceanography, and paleoclimate

    A qualitative exploration of the barriers and facilitators of community pharmacy PrEP delivery for pharmacists and community members

    Get PDF
    BACKGROUNDOral Pre-Exposure Prophylaxis (PrEP) is only available free of charge in the United Kingdom from sexual health clinics. Expanding PrEP delivery to community pharmacies could be an effective way of improving access to PrEP and aligns well with the UK government goals for England to eliminate new cases of HIV by 2030. Using the Capability, Opportunity, Motivation, Behaviour (COM-B) Model, the aim of this research was to explore the barriers and facilitators of community pharmacy PrEP delivery, perceived by pharmacists and community members underserved through current delivery models.METHODCommunity members at risk of acquiring HIV but not currently accessing PrEP and community pharmacists were recruited to participate in semi-structured open-ended interviews. Interviews were online, via phone or in person, were audio recorded, fully transcribed, and analysed using thematic analysis, informed by COM-B. RESULTSA total of 17 interviews with pharmacists (pharmacy owners n=7; employed pharmacists n=6; locums n=4) and 24 with community members (Black African women n=6; other women n=2; young adults aged 18- 25-years n=6; trans people n=6; street sex workers n=4) were conducted. Thematic analysis showed barriers include sub-optimal awareness and knowledge of PrEP, perceptions of pharmacist roles in delivering public health services (capability), lack of staff capacity, pharmacy facilities and privacy (opportunity), concern about being seen accessing PrEP from a pharmacy, a preference to access PrEP from a General Practitioner (GP) and a belief that pharmacy PrEP delivery could increase STIs (motivation). Facilitators included improving PrEP education and awareness (capability), the accessibility of pharmacies, being able to deliver PrEP via a patient group directive (PGD) (opportunity), a general preference for pharmacy PrEP and a belief that this model of delivery would be discrete, help decrease stigma and improve access to PrEP, particularly for those who felt uncomfortable accessing PrEP from sexual health clinics (motivation). CONCLUSIONPharmacy PrEP delivery is acceptable to pharmacists and community members but for it to be feasible, results point to the need for a behaviour change intervention incorporating education, training and awareness raising, for both pharmacists and community members to improve access, stimulate patient activation and de-stigmatise HIV and PrEP. <br/
    • …
    corecore