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Abstract 
All mean excitations energies for second and third row atoms and their ions are calculated in the random-phase 
approximation using large basis sets. To a very good approximation it turns out that mean excitation energies 
within an isoelectronic series is a quadratic function of the nuclear charge. It is demonstrated that this behavior is 
linked to the fact that the contributions from continuum electronic states give the dominate contributions to the 
mean excitation energies and that these contributions for atomic ions appear hydrogen-like. We argue that this 
finding may present a method to get a first estimate of mean excitation energies also for other non-relativistic 
atomic ions.  
 

1. Introduction 

The slowing down of a swift projectile with energy in the MeV range when impinging on a target of atoms, 

molecules or solids is caused primarily by electronic excitation of the electrons in the target by transfer of 

projectile kinetic energy to target electronic energy. This has been known since Bethe first derived the basic 

theory for this process1. Also, one of the most interesting findings is that the only essential material 

constant determining the slowing down or stopping power of the target is a weighted average of all the 

target electronic excitation energies, referred to as the mean excitation energy. Thus, the stopping of heavy 

charged particles in matter is basically an electronic structure problem and application of known methods 

of electronic structure theory that are able to calculate all electronic excitation energies of a given atom or 

molecule may straightforwardly be applied to this problem2-5.  

The range of electronic excitation energies needed to calculate the mean excitation energy as well as many 

other sum over states molecular properties6,7 includes both bound and continuum states and for many 

properties, for all atoms and molecules, the major contribution to the mean excitation energy originates 

from electron excitations into the continuum. Luckily, it turns out that a stick-spectrum representation of 

the continuum in terms of pseudo-states placed in the continuum suffices when calculating atomic and 

molecular mean excitation energies8, which means that one may apply standard finite basis set methods 

also when calculating the continuum contributions to the mean excitation energies. However, rather large 

and flexible basis sets as well as inclusion of all excited states in the sum over states expressions are needed 

in order to obtain converged results for the computed mean excitation energies. 

The loss of kinetic energy of a proton projectile per unit path length is referred to as the stopping power of 

the target material and this quantity is of central importance for the understanding of many fundamental 
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processes. For years, X-ray beams have been used for medical purposes such as for cancer therapy, but 

more recently therapy has carried out using heavy, massive particle beams such as proton beams which 

allows for considerable reduction of the collateral damage of surrounding tissue associated with radiative 

treatment9,10 due to the narrowness of the peak in the stopping power curve as a function of projectile 

energy for particle beams. 

However, the focus of this paper is the application of mean excitation energies – and thus stopping power 

data – to materials where the target itself consists of a mixture of charged particles, i.e. plasmas. Targets of 

this sort may be found in fields such as reactor physics11, planetary atmospheres12, and interstellar space13. 

In these fields one often needs to know the stopping power for many ionized states of an atom. Thus, it is 

the purpose of this paper to calculate these mean excitation energies for all atoms for which we can safely 

neglect relativistic effects in the electronic structure calculations and also to derive simple rules that allow 

one to derive the mean excitation energy of any ionized form of an atom from the knowledge of the mean 

excitation energy of the neutral atom or any other ion in an isoelectronic series. 

We first give an outline of the definition and the application of mean excitation energy followed by a 

description of the method used to calculate them. We report mean excitation energies for all second and 

third row atoms and their ions, and the rest of the paper deals with the systematics and the explanation of 

the nuclear charge (Z) dependence of the atomic ion mean excitation energies. 

 

2. Definitions 

The central material constant in the theory of stopping power, the mean excitation energy, is defined as 

𝐼0  =  exp (
∑ 𝑓𝑛0ln (𝐸𝑛0)𝑛≠0

∑ 𝑓𝑛0𝑛≠0
)      (1) 

Here, 𝐸𝑛0 = 𝐸𝑛 − 𝐸0 is the excitation energy between the ground state |0⟩ and the excited state |𝑛⟩ and 

𝑓𝑛0 is the electric dipole oscillator strength for the same excitation which in the dipole length 

approximation using atomic units is defined as 

𝑓𝑛0  =
2

3
⟨0|𝒓|𝑛⟩ · ⟨𝑛|𝒓|0⟩ 𝐸𝑛0     (2) 

The summations in Eq. (1) extend over all excited states, bound as well as continuum. For the continuum 

states, the summation should have been integration but for simplicity we have used the summation sign for 

all states as is the practice in finite basis set calculations where the integration over the continuum states is 

replaced by a summation over discrete pseudo states placed in the continuum (vide infra). 

 

3. Details of the Calculations 

All calculations have been carried out with the Dalton program package14 at the level of the random-phase 

approximation (RPA). In practice, the calculations on the open shell atoms or ions were carried out as 

MCSCF calculations with one configuration corresponding to one of the states of the atomic term.  For 

every atom or ion all excitation energies and the corresponding dipole oscillator strengths were calculated 



3 
 

in the given basis set and the mean excitation energy was then computed as a sum over states according to 

Eq. (1). A majority of the excited states were placed in the continuum. 

Based on our previous basis set studies3,5,15,16 we adopted the largest correlation-consistent basis sets of 

Dunning and co-workers17 as one-electron basis sets. For B to F the Dunning’s core-valence correlation 

consistent basis set aug-cc-pCV5Z was employed, for Al to Ar the fully uncontracted aug-cc-pCV5Z. For Li 

and Be the fully uncontracted aug-cc-pCVQZ and for Na and Mg the fully uncontracted cc-pCV5Z basis sets 

had to be used, as an aug-cc-pCV5Z has not yet been published. The Thomas-Reiche-Kuhn sum rule18, 

∑ 𝑓𝑛0𝑛≠0 = 𝑁       (3) 

in which N is the number of electrons, was fulfilled for all the studied atoms and their ions to at least two 

decimal places in the length, mixed and velocity representations. Also the mean excitation energies are the 

same to three digits in the three representations. Although this equivalence is not a sufficient condition it is 

nevertheless a necessary condition for basis set completeness in RPA19. 

 

4. Results 

The calculated mean excitation energies in the dipole length formulation in RPA are reported in Tables 1-18 

for all second and third row atoms and their ions. For completeness sake we have also added RPA results 

from previous calculations8,20 for first row atoms and ions in Table 1 and 2. In order to illustrate better the 

systematics of the Z-dependence of the mean excitation energies each table contains mean excitation 

energy for one isoelectronic series only. In fact, the table numbering is the same as the number of electrons 

in the isoelectronic series which we will refer to as N in the rest of the text. 

In order to determine more precisely how the calculated mean excitation energies in an isoelectronic series 

depends on Z we first notice that the mean excitation energy for a hydrogen-like, one-electron atomic ion 

is21,22 

𝐼0  =  𝑍2𝐼0(H)       (4) 

Let us next consider how well this relationship – in a modified form – holds for the rest of the ions. To this 

end we express the computed mean excitation energy as 

𝐼0  = 𝑍eff
2  𝐼0(H)      (5) 

with 𝑍eff being 

𝑍eff  = 𝑍 − 𝑆       (6) 

One may view 𝑆 as a screening constant, but as we shall see later, this interpretation does not hold for all 

ions. 

The quantities Zeff and S as well as the differences in S from one ion to the next, when different from zero, 

are also given in Tables 1-18. 
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Table 1. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 1-electron ions 

with electron configuration 1s1. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

H 14.99c) 1.00 0.00 

He+ 59.88d) 2.00 0.00 

Li2+ 134.5 2.99 0.01 

Be3+ 240.2 4.00 0.00 

B4+ 374.6 5.00 0.00 

C5+ 539.5 6.00 0.00 

N6+ 734.3 7.00 0.00 

O7+ 959.0 8.00 0.00 

F8+ 1213.7 9.00 0.00 

Ne9+ 1498.4 10.00 0.00 

Na10+ 1813.9 11.00 0.00 

Mg11+ 2158.8 12.00 0.00 

Al12+ 2533.5 13.00 0.00 

Si13+ 2938.3 14.00 0.00 

P14+ 3373.1 15.00 0.00 

S15+ 3837.8 16.00 0.00 

Cl16+ 4332.5 17.00 0.00 

Ar17+ 4857.2 18.00 0.00 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c) RPA value from reference 8 

d) RPA value from reference 20 

 

Table 2. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 2-electron ions 

with electron configuration 1s2. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

He 42.68c) 1.69 0.31 

Li1+ 108.3 2.69 0.31 

Be2+ 205.0 3.70 0.30 

B3+ 330.4 4.69 0.31 

C4+ 486.2 5.70 0.30 

N5+ 672.0 6.70 0.30 

O6+ 887.8 7.70 0.30 

F7+ 1133.5 8.70 0.30 

Ne8+ 1409.2 9.70 0.30 

Na9+ 1715.6 10.70 0.30 
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Mg10+ 2051.5 11.70 0.30 

Al11+ 2417.2 12.70 0.30 

Si12+ 2813.0 13.70 0.30 

P13+ 3238.8 14.70 0.30 

S14+ 3694.5 15.70 0.30 

Cl15+ 4180.2 16.70 0.30 

Ar16+ 4695.9 17.70 0.30 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c) RPA value from reference 20 

 

Table 3. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 3-electron atom 

and ions with electron configuration 1s22s1. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

Li 33.1 1.49 1.51  

Be1+ 76.9 2.26 1.74 0.22 

B2+ 136.9 3.02 1.98 0.24 

C3+ 214.2 3.78 2.22 0.24 

N4+ 308.7 4.54 2.46 0.24 

O5+ 420.7 5.30 2.70 0.24 

F6+ 550.0 6.06 2.94 0.24 

Ne7+ 696.8 6.82 3.18 0.24 

Na8+ 861.2 7.58 3.42 0.24 

Mg9+ 1043.2 8.34 3.66 0.24 

Al10+ 1242.7 9.10 3.90 0.24 

Si11+ 1459.8 9.87 4.13 0.24 

P12+ 1694.6 10.63 4.37 0.24 

S13+ 1947.0 11.40 4.60 0.24 

Cl12+ 2217.2 12.16 4.84 0.24 

Ar15+ 2505.0 12.93 5.07 0.23 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 4. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 4-electron atom 

and ions with electron configuration 1s22s2. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

Be 42.2 1.68 2.32  

B1+ 82.3 2.34 2.66 0.34 

C2+ 134.8 3.00 3.00 0.34 
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N3+ 200.2 3.65 3.35 0.34 

O4+ 278.6 4.31 3.69 0.34 

F5+ 370.2 4.97 4.03 0.34 

Ne6+ 475.0 5.63 4.37 0.34 

Na7+ 593.3 6.29 4.71 0.34 

Mg8+ 724.8 6.95 5.05 0.34 

Al9+ 869.6 7.62 5.38 0.34 

Si10+ 1027.9 8.28 5.72 0.34 

P11+ 1199.7 8.95 6.05 0.33 

S12+ 1384.9 9.61 6.39 0.33 

Cl13+ 1583.7 10.28 6.72 0.33 

Ar14+ 1796.0 10.95 7.05 0.33 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 5. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 5-electron atom 

and ions with electron configuration 1s22s22p1. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

B 52.6 1.87 3.13  

C1+ 92.6 2.49 3.51 0.39 

N2+ 142.4 3.08 3.92 0.40 

O3+ 202.2 3.67 4.33 0.41 

F4+ 272.3 4.26 4.74 0.41 

Ne5+ 352.6 4.85 5.15 0.41 

Na6+ 443.5 5.44 5.56 0.41 

Mg7+ 544.8 6.03 5.97 0.41 

Al8+ 656.4 6.62 6.38 0.41 

Si9+ 778.6 7.21 6.79 0.41 

P10+ 911.2 7.80 7.20 0.41 

S11+ 1054.5 8.39 7.61 0.41 

Cl12+ 1208.2 8.98 8.02 0.41 

Ar13+ 1372.6 9.57 8.43 0.41 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 6. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 6-electron atom 

and ions with electron configuration 1s22s22p2. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 
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C 65.9 2.10 3.90  

N1+ 107.4 2.68 4.32 0.42 

O2+ 157.2 3.24 4.76 0.44 

F3+ 215.6 3.79 5.21 0.45 

Ne4+ 282.8 4.34 5.66 0.45 

Na5+ 358.7 4.89 6.11 0.45 

Mg6+ 443.8 5.44 6.56 0.45 

Al7+ 537.4 5.99 7.01 0.45 

Si8+ 640.1 6.53 7.47 0.45 

P9+ 751.7 7.08 7.92 0.45 

S10+ 872.2 7.63 8.37 0.45 

Cl11+ 1001.8 8.17 8.83 0.45 

Ar12+ 1140.3 8.72 9.28 0.45 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 7. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 7-electron atom 

and ions with electron configuration 1s22s22p3. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

N 81.6 2.33 4.67  

O1+ 125.2 2.89 5.11 0.44 

F2+ 176.4 3.43 5.57 0.46 

Ne3+ 235.2 3.96 6.04 0.47 

Na4+ 301.9 4.49 6.51 0.47 

Mg5+ 376.7 5.01 6.99 0.47 

Al6+ 459.2 5.53 7.47 0.48 

Si7+ 549.7 6.06 7.94 0.48 

P8+ 648.2 6.58 8.42 0.48 

S9+ 754.6 7.10 8.90 0.48 

Cl10+ 869.1 7.61 9.39 0.48 

Ar11+ 991.6 8.13 9.87 0.48 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 8. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 8-electron atom 

and ions with electron configuration 1s22s22p4. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

O 97.9 2.56 5.44  

F1+ 144.0 3.10 5.90 0.46 
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Ne2+ 196.9 3.62 6.38 0.47 

Na3+ 256.8 4.14 6.86 0.49 

Mg4+ 324.3 4.65 7.35 0.49 

Al5+ 398.8 5.16 7.84 0.49 

Si6+ 480.6 5.66 8.34 0.50 

P7+ 569.7 6.16 8.84 0.50 

S8+ 666.2 6.67 9.33 0.50 

Cl9+ 769.9 7.17 9.83 0.50 

Ar10+ 881.1 7.67 10.33 0.50 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 9. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 9-electron atom 

and ions with electron configuration 1s22s22p5. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

F 116.5 2.79 6.21  

Ne1+ 165.2 3.32 6.68 0.47 

Na2+ 220.4 3.83 7.17 0.49 

Mg3+ 282.5 4.34 7.66 0.49 

Al4+ 351.0 4.84 8.16 0.50 

Si5+ 426.5 5.33 8.67 0.50 

P6+ 508.8 5.83 9.17 0.51 

S7+ 598.0 6.32 9.68 0.51 

Cl8+ 694.0 6.80 10.20 0.51 

Ar9+ 797.0 7.29 10.71 0.51 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 10. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 10-electron 

atom and  ions with electron configuration 1s22s22p6. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

Ne 137.2 3.03 6.97  

Na1+ 189.2 3.55 7.45 0.47 

Mg2+ 246.8 4.06 7.94 0.49 

Al3+ 310.8 4.55 8.45 0.50 

Si4+ 381.4 5.04 8.96 0.51 

P5+ 458.5 5.53 9.47 0.51 

S6+ 542.1 6.01 9.99 0.52 

Cl7+ 632.1 6.49 10.51 0.52 
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Ar8+ 728.8 6.97 11.03 0.52 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

 

Table 11. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 11-electron 

atom and ions with electron configuration 1s22s22p63s1. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

Na 125.7 2.90 8.10  

Mg1+ 173.7 3.40 8.60 0.49 

Al2+ 225.8 3.88 9.12 0.52 

Si3+ 283.1 4.35 9.65 0.54 

P4+ 345.9 4.80 10.20 0.54 

S5+ 414.4 5.26 10.74 0.55 

Cl6+ 488.6 5.71 11.29 0.55 

Ar7+ 568.6 6.16 11.84 0.55 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 12. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 12-electron 

atom and ions with electron configuration 1s22s22p63s2. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

Mg 128.0 2.92 9.08  

Al1+ 172.7 3.39 9.61 0.53 

Si2+ 221.2 3.84 10.16 0.55 

P3+ 274.3 4.28 10.72 0.56 

S4+ 332.4 4.71 11.29 0.57 

Cl5+ 395.5 5.14 11.86 0.57 

Ar6+ 463.9 5.56 12.44 0.57 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 13. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 13-electron 

atom and ions with electron configuration 1s22s22p63s23p1. 
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Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

Al 132.2 2.97 10.03  

Si1+ 177.2 3.44 10.56 0.53 

P2+ 225.2 3.88 11.12 0.56 

S3+ 277.3 4.30 11.70 0.58 

Cl4+ 333.8 4.72 12.28 0.58 

Ar5+ 394.9 5.13 12.87 0.59 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 14. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 14-electron 

atom and ions with electron configuration 1s22s22p63s23p2. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

Si 140.8 3.06 10.94  

P1+ 185.3 3.52 11.48 0.55 

S2+ 232.8 3.94 12.06 0.57 

Cl3+ 284.1 4.35 12.65 0.59 

Ar4+ 339.4 4.76 13.24 0.59 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 15. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 15-electron 

atom and ions with electron configuration 1s22s22p63s23p3. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

P 151.6 3.18 11.82  

S1+ 195.7 3.61 12.39 0.57 

Cl2+ 242.9 4.03 12.97 0.59 

Ar3+ 293.7 4.43 13.57 0.60 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 16. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 16-electron 

atom and ions with electron configuration 1s22s22p63s23p4. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

S 162.4 3.29 12.71  
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Cl1+ 206.8 3.71 13.29 0.58 

Ar2+ 254.0 4.12 13.88 0.60 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 17. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 17-electron 

atom and ions with electron configuration 1s22s22p63s23p5. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

ΔS c) 

Cl 174.9 3.42 13.58  

Ar1+ 219.5 3.83 14.17 0.59 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

c)
 ΔS is the difference in S between the entry in preceding row and in this row. 

 

Table 18. Mean excitation energy, I0 (in eV), effective charge and shielding constant S of the 18-electron 

atom and ions with electron configuration 1s22s22p63s23p6. 

Ion 𝐼0 [eV] 𝑍eff 
a) S b) 

Ar 188.7 3.55 14.45 
a) The effective charge defined in Eq. (5). 

b) The S parameter is defined in Eq. (6). 

In the random-phase approximation electron correlation is included through first order in the fluctuation 

potential for both the ground and excited states23. It has been our experience that this level of theory is 

sufficient to obtain reliable mean excitation energies. That this in fact also is the case for the atoms and 

ions we are concerned with here can also be seen from comparison with the more correlated, Second-

Order Polarization Propagator(SOPPA)23 calculations on Be  that gave I0 = 43.6 eV24. Also SOPPA calculations 

for some aluminum ions25 resulted in mean excitation energies that are within a couple of eV’s of those 

reported here, the small difference most likely being due to the use of smaller one-electron  basis sets 

being applied in the SOPPA calculations25 . Finally, correlated coupled cluster based calculations on the 

noble gases16 in basis set of the same quality as the ones used here showed that the including correlation at 

the CCSD level only reduced the RPA values with 1.8 eV for Ne and 2.2 eV for Ar. 

Since electron correlation is included in an RPA calculation it is not possible to break the computed mean 

excitation energies up into orbital contributions as it would have been in for example a Hartree-Fock 

calculation, the accuracy of which on the other hand would not have been sufficient for our purpose. This 

also has the consequence that orbital differences in the screening abilities of the individual electrons are 

averaged out in the Zeff parameter and it thus becomes less appropriate to refer to it as screening constant 

as we shall discuss later. 
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5. Z-dependence of the mean excitation energies 

In Figure 1 we have plotted the Z-dependence of the mean excitation energies of the neutral atoms.  For 

completeness we have also included the exact mean excitation energy of the hydrogen atom, 𝐼0(H) = 

14.990 eV21 as well as the RPA-value for He20. 

The basic trend in Fig. 1 is a monotonic increase in I0 with increasing nuclear charge of the atom, the 

exception being the noble gases which have larger mean excitation energy than the subsequent alkali 

metal. Another way of expressing the trend in Fig. 1 would be to say that the mean excitation energies in a 

row form a monotonically increasing series. As the stopping power is inversely proportional to the 

logarithm of the mean excitation energy4,22 we can conclude that the ability of a neutral atom to slow down 

an incoming fast projectile at a given velocity decreases as the atomic charge is increasing and that this 

effect is a monotonic function of Z, the noble gases being the exception to this general trend. 

Figure 1 also displays the shell structure of the neutral atoms as the curve is rather similar in structure for 

the second and third row atoms. One may notice though that the increase in I0 with Z levels of going from 

first to second and third row atoms. 

 

 

Figure 1. The mean excitation energy I0 (in eV) for neutral atoms as a function of the nuclear charge Z. 

 

For all the atomic ions, we see from Tables 1-18 that the mean excitation energy of the ions in any 

isoelectronic series increases with nuclear charge. This is an effect of the electrons being pulled closer to 

the nucleus as its charge increases and is illustrated for the C-isoelectronic in Fig. 2. This behavior of I0 in 

turn also implies that the stopping power of atomic ions will decrease along an isoelectronic series.  
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Figure 2. The mean excitation energy I0 (in eV) for the 6-electron isoelectronic series (data from Table 6). 

 

Comparing Fig. 1 with Tables 1-18 and Fig. 2 we see that the changes in I0 with Z are considerably more 

pronounced for atomic ions than for neutral atoms. 

From Table 1 we see, as expected, that  𝑆 = 0.00 in Eq. (5) for one-electron ions, indicating that the 

computed mean excitation energies are in agreement with Eq.(4) and thus correct for this series. For all the 

two-electron ions in both rows (Table 2), the screening constant is 0.30, i.e. equal to Slater’s originally 

suggested value for the 1s-shell26, a somewhat surprising result in view of the fact that this screening 

constant was suggested for a very different purpose than the present. Thus, irrespective of the charge of 

the central atom the same screening constant may be applied when calculating K-shell mean excitation 

energies. 

For the rest of the isoelectronic series we see that the screening constant is increasing with increasing 

nuclear charge of the atom. However, rather early on in the isoelectronic series, 𝑆 becomes larger than the 

number of electrons in the series (for instance for Ne7+ in the 3-electron series) so it loses its meaning as a 

“screening constant” and becomes merely a parameter describing the computed mean excitation energies 

in terms of Eqs. (5) and (6). 

From Tables 2-18 we also see that the increase in 𝑆 is (nearly) constant going from one ion to the next in a 

given isoelectronic series.  Only for the lowest charged ion(s) in the isoelectronic series do we see a minor 

deviation from this constancy. Also, the constant is the same for both second and third row ions.   

The increases in 𝑆 with increasing nuclear charge differ from one isoelectronic series to another, starting 

with 0.24 for 3-electron ions and ending up with close to 0.60 for the isoelectronic series with most 

electrons for which we can reliably extract values for from the present data set of mean excitation 

energies. 
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Thus, we have the following linear relationship between the S parameter of the ion 𝑆𝑁(𝑍) and that of the 

neutral atom 𝑆𝑁(𝑁 = 𝑍) ≡ 𝑆𝑁0  

𝑆𝑁 (𝑍) = 𝑆𝑁0 + (𝑍 − 𝑁)𝐷𝑁      (7) 

where  𝑁 = 1,2,3,4 … labels the number of electrons in the isoelectronic series and thus N must be smaller 

than or equal to Z in order for Eq.(7) to be valid. Please note that Eq. (7) also holds for the 1-electron ions 

for which both SN0 and DN are zero and for the 2-electron isoelectronic series where the values of SN0 and DN 

are 0.30 and 0.00, respectively. The 𝐷𝑁 constants in Eq. (7) can be extracted from Tables 1-18 and are given 

in Table 19. 

Inserting Eqs. (6) and (7) into Eq. (5) we find that the mean excitation energy for an ion with nuclear charge 

Z in the N-electron isoelectronic series, I0N(Z), may be calculated from the equation 

𝐼0𝑁(𝑍)

𝐼0(H)
= 𝐴𝑁𝑍2 + 𝐵𝑁𝑍 + 𝐶𝑁      (8) 

where  

𝐴𝑁 = (1 − 𝐷𝑁)2      (9) 

𝐵𝑁 = 2(1 − 𝐷𝑁)(𝑁𝐷𝑁 − 𝑆𝑁0)     (10) 

and 

𝐶𝑁 = (𝑁𝐷𝑁 − 𝑆𝑁0)2      (11) 

Thus, for a given isoelectronic series, the mean excitation energy of any ion in the series is a quadratic 

function of the nuclear charge and the mean excitation energy can be computed from one constant DN and 

the mean excitation energy of the neutral ( N= Z) atom, 𝐼0𝑁, since the constant SN0 in Eqs. (9) and (10) is 

related to I0N as 

𝑆𝑁0 = 𝑁 − √
𝐼0𝑁

𝐼0(H)
      (12) 

 

The constants in Eq. (8) are given in Table 19. The Table lists only the parameters for the isoelectronic series 

for which our calculations give converged values of the S parameter in Eq. (6).  

Table 19.The parameters needed for an approximate calculation of the mean excitation energy of atomic 

ions in an isoelectronic series with N electrons, according to Equation (8). 

N DN SN0 AN BN CN 

1 0 0 1 0 0 

2 0.00 0.30 1.00 -0.60 0.09 

3 0.24 1.51 0.58 -1.20 0.62 

4 0.34 2.32 0.44 -1.27 0.92 

5 0.41 3.13 0.35 -1.27 1.17 

6 0.45 3.90 0.30 -1.32 1.44 
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7 0.48 4.67 0.27 -1.36 1.72 

8 0.50 5.44 0.25 -1.44 2.07 

9 0.51 6.21 0.24 -1.60 2.66 

10 0.52 6.97 0.23 -1.69 3.13 

11 0.55 8.10 0.20 -1.85 4.20 

12 0.57 9.08 0.18 -1.93 5.02 

13 0.58 10.03 0.18 -2.09 6.20 

14 0.59 10.94 0.17 -2.68 10.69 

 

Since the ΔS are not exactly constant for an isoelectronic series, application of Eq. (8) will not give precisely 

the mean excitation energies in Tables 1-18. For example, the mean excitation energy calculated from Eq. 

(8) for Al5+ is 384 eV compared with 399 eV from Table 8. The predictive potential of Eq. (8) can be 

improved if one of the more ionized ions in the isoelectronic series is used as the preliminary ion from 

which the rest of the mean excitation energies in the isoelectronic series are calculated from according to a 

slightly modified version of Eq. (8). For instance, calculating I0(Al5+) from I0(Na3+) rather than from I0(O) as 

above using a modified version of Eq. (8) yields I0(Al5+) = 396 eV in considerable better agreement with the 

value in Table 8. The modified version of Eq. (8) used in the latter calculation is obtained from Eq. (8) by 

replacing N by N + k and SN0 by SNk in both Eqs. (10) and (11). Here, k is the number of ∆S steps that the new 

reference ion with mean excitation energy I0k lies away from the neutral atom in the isoelectronic series. In 

the preceding example k = 3. 

Thus, application of Eq. (8) can give improved values for the mean excitation energy if one uses a reference 

mean excitation energy for an ion in the isoelectronic series for which ∆S has converged. This of course 

requires that I0 is known for the reference ion. 

 

6. Discussion 

We have designed a method to calculate mean excitation energies for highly ionized atoms in an 

isoelectronic series from I0 of neutral atom or - perhaps even better - slightly ionized atoms. The method 

relies upon the observation that the atomic mean excitation energy in an isoelectronic series to a very good 

approximation turns out to be a quadratic function of the nuclear charge Z, see Eq. (8) and Table 19. 

In order to better understand this behavior we first notice that for a hydrogen-like, 1-electron atom the 

oscillator strength in Eq. (2) is independent of nuclear charge since the Z-dependence of the individual 

transition moments are Z-1 while the excitation energies are proportional to Z2. However, also the 

calculated oscillator strengths for an isoelectronic series turned out to be nearly independent of Z, in 

particular for all higher lying excited states, i.e. for excitations into the pseudo continuum states that gives 

the dominate contributions to the mean excitation energy8. The Z-independence of fn0 works best for ions 

with some charge, that is, ions for which DN becomes constant. For an electron in a high-lying continuum 

state the atomic core will look very much hydrogen-like and that is probably the reason why we see the 

same Z-independence of the oscillator strengths for those states as one finds for a hydrogen-like system. 
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Thus, from the definition in Eq. (1) it follows that the Z-dependence of the mean excitation energies in an 

atomic isoelectronic series is primarily determined by the Z-dependence of the excitation energies – and 

among those, the excitation energies of the higher lying continuum states. As argued previously an electron 

in these states will experience a hydrogen-like core and thus its excitation energy is determined through 

the approximate relation that resembles that in Eq. (4) 

En0(N,Z) ~ (Z-SN(Z))2En0(Z=N)      (13) 

where SN(Z) is given in Eq. (7). Following this line of argumentation the increase in SN(Z) for the N-electron 

isoelectronic series with increasing Z may be explained as an increasing ability of the N electrons to screen 

the atomic core as Z is increasing. Furthermore, this screening ability will increase with N, thus resulting in 

the increase in DN we are seeing in Table 19. 

We have tested the validity of Eq. (13) by calculating the individual excitation energies that contribute to 

the mean excitation energies in an isoelectronic series to see if they in fact obey Eq. (13). More specifically, 

we have calculated the ratio En0(N,Z)/En0(N, Z+1) for a given N and all states |𝑛⟩  as a function of Z. If the 

assumption in Eq. (13) holds this ratio must be equal the ratios between the square of Zeff/(Z+1)eff  taken 

from Table N which in fact turns out to be the case to a very good approximation. The larger Z becomes the 

better the relation is fulfilled. 

The relationship between I0N and Z for an N-electron isoelectronic series in Eq. (8) is based on computed, 

accurate mean excitation energies for second and third row atoms and their ions. However, since the origin 

of this relationship seems to be that an electron in a high-lying continuum state sees the core as a 

screened, hydrogen-like core it likely that Eq. (8) also will hold for isoelectronic series of atoms in higher 

rows of the periodic table as long as one may safely disregard relativistic effects. So, knowing one mean 

excitation energy in an isoelectronic series a first estimate of the rest of the mean excitation energies in the 

same isoelectronic series may be obtained from Eq. (8) and the constants in Table 19 for isoelectronic 

series with electrons smaller than 15, i.e. for K and L shell ions. This may provide useful information in 

plasma and reactor physics where it often is necessary to know stopping powers for a range of atomic 

ions11,27. As explained in Sec. 5 one need not know the mean excitation of the neutral atom in order to 

make use of Eq. (8). Knowledge of I0 of any ion in the series will do. 

As the origin of the quadratic behavior of I0 as a function of Z in a given isoelectronic series may be traced 

back to the two observations that the bulk of the contributions to I0 originates from high-lying continuum 

states and that these states are hydrogen-like then similar relationship between sum rules and Z in 

isoelectronic series most likely also will hold for other dipole oscillator strength sum rules that are 

determined by primarily continuum contributions8, i.e. Sn and Ln sum rules for n ≥ 0. 

 

7. Conclusions 

We have reported accurate calculations of mean excitation energies for all second and third row atoms and 

atomic ions using the random-phase approximation and large one-electron basis sets. An analysis of the 

computed results revealed that mean excitation energies within an isoelectronic series to a very good 

approximation were quadratic functions of the nuclear charge Z. The more precise relationship is given in 
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Eq. (8) and Table 9. We also argue that the background for this relationship is that for electrons in high-

lying continuum states the ion core appears hydrogen-like. This in turns implies that the validity of the 

quadratic relationship in Eq. (8) may be extended beyond the second and third row of the periodic system. 
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