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Abstract 

We have investigated the relationship between two methods to obtain mean excitation energies of large samples 

using a modified Bragg rule, one method using Bragg’s rule to determine elemental mean excitation energies from 

experimental stopping power data, and another method going the opposite way, that is determining compound mean 

excitation energies from theoretical elemental mean excitation energies and bond correction factors. We show how 

to obtain bond correction factors from elemental mean excitation energies and vice versa. The comparison leads to 

insight into the importance of the effect of chemical binding on the experimentally determined elemental mean 

excitation energies. We also introduce the concept of atomic correction factor that links theoretical, gas phase 

atomic mean excitation energies to elemental mean excitation energies. 
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1. Introduction 

The mean excitation energy, I, is the most central materials constant determining the slowing down of fast, 

high energy particles in matter [1,2]. As matter often are complicated substances in terms of molecular 

structure and compositions of those [3,4], the determination of the mean excitation energies will have to 

rely upon a method that can calculate I of a sample from the parts making up the sample. Here, Bragg’s 

additivity rule [5] is the most suitable tool and extensive use of it has been made over the years [6,7]. 

However, in its original form Bragg’s rule has some shortcomings as it disregards the chemical binding and 

the phase differences of the parts making up the large sample and the sample itself. Recently, two different 

approaches have been suggested that might overcome these difficulties by modifying Bragg’s original rule, 

the introduction of elemental mean excitation energies [8] and the concept of bond correction factors [9]. 

The purpose of this note is to compare the two methods and to show how they are related. 

 

2. Elemental mean excitation energies 

Recently, Bär et al. [8] have introduced the concept of elemental mean excitation energies 𝐼𝑒𝑙𝑒𝑚,𝑗  as a tool 

to calculate mean excitation energies of large media, 𝐼𝑚𝑒𝑑,𝑖 ,for which you know the elemental 

composition, such as human tissues [3,4]. To this end they are using Bragg’s rule [5] expressed as 
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                                                                   𝑙𝑛𝐼𝑚𝑒𝑑,𝑖 = ∑ 𝜆𝑚𝑒𝑑,𝑖𝑗
𝑁
𝑗=1 𝑙𝑛𝐼𝑒𝑙𝑒𝑚,𝑗                                                            (1) 

Here, N is the number of elements and 𝜆𝑚𝑒𝑑,𝑖𝑗 is the fraction of electrons from the j-th element in the i-th 

medium given by 

                                                                     𝜆𝑚𝑒𝑑,𝑖𝑗 =
𝑤𝑚𝑒𝑑,𝑖𝑗(

𝑍𝑗
𝐴𝑗

⁄ )

(𝑍
𝐴⁄ )𝑚𝑒𝑑,𝑖

                                                                             (2) 

where 𝑤𝑚𝑒𝑑,𝑖𝑗  is the elemental weight of the j-th element in the i-th medium and 𝑍𝑗  and 𝐴𝑗 are the atomic 

number and molar mass, respectively, of the j-th element. Correspondingly, (𝑍
𝐴⁄ )𝑚𝑒𝑑,𝑖 is number of 

electrons per unit mass in the i-th medium (in mol/g). 

Bär et al. [8] is making use of Eq. (1) in two ways. First, to calculate the elemental mean excitation energies 

from mean excitation energies of a range of media using both experimental and theoretical values [10-15] 

for 𝐼𝑚𝑒𝑑,𝑖, that is, inverting Eq. (1). They do so, using statistical mathematical methods. Both the elemental 

mean excitation energies and their uncertainties are reported. Two optimized sets of elemental mean 

excitation energies are obtained, one for gases and one for liquids and solids. By constraining the fit to 

obey Eq. (1) they are including effects of chemical bonding and phase in the elemental mean excitation 

energies. Thus, the atomic elemental mean excitation energies are no longer identical to pure atomic mean 

excitation energies as can be seen in Table 1. 

 

Table 1. Comparison of gas phase elemental [8,10] and theoretical [16] atomic mean excitation energies (in 

eV). 

Element Berger and Seltzer 
[10]a 

Bär et al. [8]a,b Sauer et al. [16]c 

H 19.20 21.54(0.74) 14.99 

C 70.00 66.75(1.08) 65.94 

N 82.00 79.59(1.15) 81.64 

O 97.00 95.17(1.01) 97.93 
aElemental mean excitation energies obtained from data for a range of media. 

bThe number in parenthesis is the uncertainty in eV computed by Bär et al. [8]. 

cTheoretical Random-Phase calculation for atoms. 

 

Table 1 shows that the biggest difference between the atomic and elemental mean excitation energies for 

atoms from Bär et al. [8] is found for H. This is not so surprising since we have shown [17], that the smallest 

error in the use of Bragg’s rule is obtained when the hydrogen fragments are H2 and not H. In fact, the 

mean excitation energy for H2 is 19.47 eV [17], which is much closer to the elemental mean energies for H 

in Table 1. The other atoms also show differences between the atomic and elemental mean excitation 

energies. Only for C does the theoretical, gas phase value for I lie inside the error bars quoted by Bär et al. 

[8]. The earlier estimates of elemental mean excitation energies by Berger and Seltzer [10] for N and O are 

more like the theoretical atomic mean excitation energies. 
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The second application of Eq. (1) by Bär et al. [8] was to calculate mean excitation energies for 70 human 

tissues using the relative atomic weights of the tissues [3,4], thus demonstrated the usefulness of the 

method to produce mean excitation energies that may be used in radiative treatment of patients. 

 

 

3. Bond correction factors 

The use of bond correction factors for the calculation of molecular mean excitation energies also make use 

of Bragg’s rule [5] for mean excitation energies. It adds a new term to the atomic Bragg rule to account for 

chemical binding so that it becomes [9] 

                                             𝑁𝑒𝑙𝑛𝐼 = ∑ 𝑁𝑒,𝑖𝑙𝑛
𝑁𝑎
𝑖=1 𝐼𝑖 +  ∑ 𝑁𝑒,𝑘

𝑁𝑏
𝑘=1 𝑙𝑛𝑓𝑘                                                                (3) 

where 𝑁𝑒  is the number of electrons in the molecule, 𝑁𝑒,𝑘 is the number of electrons in the k-th bond and  

𝑁𝑒,𝑖 is the number of electrons in the i-th atom, thus 

                                         ∑ 𝑁𝑒,𝑖
𝑁𝑎
𝑖=1 = 𝑁𝑒                                                                                                                   (4) 

Here, 𝑁𝑎 and   𝑁𝑏  are the number of atoms and bond in the molecule, respectively. The dimensionless 

bond correction factor for the k-th bond, 𝑓𝑘 ,is introduced to correct for the lack of chemical bonding if only 

the first term was included in Eq. (3).  

Eq. (3) may be reformulated to [9]  

                                               𝑁𝑒𝑙𝑛𝐼 = ∑ 𝑁𝑒,𝑖,𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑖𝑛𝑔𝑙𝑛
𝑁𝑎
𝑖 𝐼𝑖 + ∑ 𝑛𝑖⇿𝑗𝑙𝑛

𝑁𝑎
𝑖,𝑗=1 (𝐼𝑖𝑓𝑖⇿𝑗)                             (5)                                                                                                                          

where the 𝑖 ⇿ 𝑗 symbol indicates “a bond between atom i and atom j”, and 𝑛𝑖⇿𝑗  is a degeneracy factor 

equal to 1 for a single bond, 2 for a double bond etc. The first sum only extends over the electrons that do 

not take part in the bond.  From this equation we see that we may interpret the bond correction factor as a 

dimensionless quantity that multiplies the mean excitation energies of the atoms that take part in the 

bond, thereby accounting for the effect of chemical binding. 

In the original application of bond correction factors [9] we used Eq. (3) to compute bond correction factors 

from known atomic and molecular mean excitation energies. We obtained a universal set of bond 

correction factors that could be applied to the calculation of molecular mean excitation energies, 

incorporating the effect of chemical bonding, for large molecules for which a direct calculation of the mean 

excitation energy is not possible.  

However, we could also have used Eqs. (3) and (4) more along the lines outlined by Bär et al. [8]. If I in Eq. 

(3) had been an experimental mean excitation energy, then the bond correction factors that were 

determined from Eq. (3) would include all the effects that were included in the experimental excitation 

energies such as chemical bonding and phase effects. As an example, let us consider liquid H2O, for which 

the ICRU 90 [18,19] recommended value for I is 78 ±2 eV. Inserting this value for I and the atomic mean 

excitation from Table 1 in Eq. (4) we find that  𝑓𝑂⇿𝐻 = 1.47 ±0.07. Only including chemical bonding in a 

single, gas phase water molecule, we [9] found that 𝑓𝑂⇿𝐻 = 1.22. Thus, including phase effect increases the 

bond correction factor with ca. 21 %. As 𝑓𝑂⇿𝐻 = 1 when there is no bonding, we see that the effects of 

phase and chemical bonding are of the same order of magnitude for H2O. 



4 
 

 

4. Calculation of bond correction factors from elemental mean excitation energies 

The water example illustrates how one may calculate bond correction factors that include effects of both 

bonding and phase from the elemental mean excitation energies. For any molecule, we find from Eqs. (1) 

and (4) that 

∑ 𝑁𝑒,𝑖
𝑁𝑎
𝑖=1 𝑙𝑛𝐼𝑒𝑙𝑒𝑚,𝑖 =  ∑ 𝑁𝑒,𝑖,𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑖𝑛𝑔𝑙𝑛

𝑁𝑎
𝑖=1 𝐼𝑖 + ∑ 𝑛𝑖⇿𝑗𝑙𝑛

𝑁𝑎
𝑖,𝑗=1 (𝐼𝑖𝑓𝑖⇿𝑗

𝑒𝑥𝑝
)                                            (6) 

where 𝑓𝑖⇿𝑗
𝑒𝑥𝑝

 then becomes the bond correction factor that will reproduce the experimental mean excitation 

energy that was inserted as the left-hand sides of both Eqs. (1) and (4) in order to obtain Eq. (6). 

Proceeding serially, we may now calculate 𝑓𝑖⇿𝑗
𝑒𝑥𝑝

using Eq. (6). We start out with molecules with only one 

unknown bond, inserting on the left-hand side of this equation the elemental mean excitation energies 

from Bär et al. [8]. Next, we then calculate “experimental” bond correction factors for molecules with more 

bond but with only one unknown bond correction factors. A few examples of the application of this method 

are illustrated in Table 2, starting out with molecules with only one unknown bond correction factor. We 

are showing bond correction factor including all corrections to the atomic Bragg’s rule, 𝑓𝑖⇿𝑗
𝑒𝑥𝑝

 ,as well as the 

factors that were obtained including only chemical bonding, 𝑓𝑖⇿𝑗
𝑏𝑜𝑛𝑑[9]. 

 

Table 2. Comparison of bond correction factors per electron obtained from liquid-solid phase elemental 

mean excitation energies, 𝑓𝑋⇿𝑌
𝑒𝑥𝑝

 , and bond correction factors for single, gas phase molecules, 𝑓𝑋⇿𝑌
𝑏𝑜𝑛𝑑 [9]. 

Bond, X⇿Y Molecule Iexp(eV)a 
𝑓𝑋⇿𝑌

𝑒𝑥𝑝 b 𝑓𝑋⇿𝑌
𝑏𝑜𝑛𝑑c Δf (%)d 

O-H H2O  78.73 1.48 1.22 21 

C-H CH4 48.30 1.19 1.25 -5 

N-H NH3 53.82 1.17 1.20 -3 

C=O CO2 99.11 1.18 1.07 10 

N-O N2O 87.57 1.01 0.96 5 

F-H HF 113.89 2.49 1.26 98 

C-C C2H6 52.53 1.25 1.12 12 

C=C C2H4 58.34 1.17 1.07 9 

C≡C C2H2 66.76 1.23 1.05 17 

C-N CH3NH2 55.78 1.85 1.09 71 

C=N CH2NH 62.42 1.30 1.07 21 

C-O CH3OH 68.91 1.54 1.08 43 

C-F CH3F 84.60 1.58 1.14 39 
aCalculated from Eq. (1) using the elemental bond mean excitation energies of Table 3 of Bär et al. [8]. 

Please note that the elemental mean excitation energy of H is 22.70 eV and not 22.07 eV as listed in Table 3 

of ref. [8] (E. Bär and H. Bouchard, private communication). 

bCalculated from Eq. (6) using liquid-solid phase elemental mean excitation energies [8] and gas phase 

atomic mean excitation energies Ii from ref. [16]. 

cFrom ref. [9]. 

d 𝑓𝑋⇿𝑌
𝑒𝑥𝑝

 - 𝑓𝑋⇿𝑌
𝑏𝑜𝑛𝑑𝑠 in per cent. 
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Table 2 shows - not unexpectedly - that for nearly all molecules the bond corrections factors that include all 

corrections to the atomic Bragg rule are larger than the factors including only the effect of chemical 

binding. However, the differences between the two sets of bond correction factors vary considerably, and it 

is not possible from the small sample of molecules in Table 2 to deduct simple rules for predicting the size 

of the bond correction factors that will be needed to calculate “experimental mean excitation energies” 

from Eq. (3). On the other hand, the method outlined in Table 2 can in principle be applied to any molecule 

that can be constructed from the elemental liquid and solid elemental mean excitation energies given in 

Table 3 of Bär et al. [8]. We thus have a method to calculate of 𝑓𝑋⇿𝑌
𝑒𝑥𝑝

 for any bond between atoms for 

which Bär et al. [8] have reported elemental mean excitation energies. 

 

5. Atomic correction factors 

However, in order to apply Eq. (3) to calculate the experimental mean excitation energy for any molecule 

we must know the bonding pattern of the molecule. This is not the case for human tissues that generally 

have rather complicated - and often unknown – molecular structure. For tissues only the elemental 

composition is known [3,4] which also was the motivation for Bär et al. [8] to determine the elemental 

mean excitation energy for each atomic substance so that they could use Eq. (1) to obtain the mean 

excitation energy for any tissue for which you know the elemental composition. 

Translated into a concept of factors multiplying gaseous mean excitation energies we would need to have 

atomic correction factors, Fi rather than bond correction factors if we were to calculate “experimental 

mean excitation energies” for compounds for which we only know the elemental composition. A trivial way 

to produce such factors would be to divide the elemental mean excitation energies from Bär et al. [8] by 

the atomic mean excitation energies [16] 

𝐼𝑒𝑙𝑒𝑚,𝑖 =  𝐹𝑖𝐼𝑎𝑡𝑜𝑚,𝑖                                                                                                                                   (7) 

 

The 𝐹𝑖 factors derived from the elemental mean excitation energies from Bär et al. [8] are listed in Table 3. 

 

Table 3. Atomic correction factors for elements for which Bär et al. [8] have reported elemental mean 

excitation energies in the liquid and solid phase. 

Atom i 𝐼𝑒𝑙𝑒𝑚,𝑖[8] 𝐼𝑎𝑡𝑜𝑚,𝑖[16] 𝐹𝑖
a 

H 22.70 14.99 1.51 

C 79.91 65.94 1.21 

N 77.91 81.64 0.95 

O 107.44 97.93 1.10 

F 136.24 116.52 1.17 

Al 191.69 132.19 1.45 

Si 150.47 140.82 1.07 

P 199.39 151.61 1.32 

Cl 175.13 174.92 1.00 
aCalculated from Eq. (7) 
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As the experimentally derived mean excitation energies generally are larger than the atomic mean 

excitation energies, the atomic correction factors are nearly always larger than 1 - but not larger than 1.5. 

However, as was the case for the bond correction factors that were used to reproduce the experimental 

mean excitation energies it is difficult to see a pattern in the variation in the size of the atomic correction 

factors. 

 

6. Calculation of elemental mean excitation energies from bond correction factors 

We have so far showed how to calculate atom and bond correction factors from elemental mean excitation 

energies, that is correction factors to the atomic Bragg rule needed to obtain experimental mean excitation 

energies. However, one would like to be able to go the other way, i.e. to compute elemental mean 

excitation energies from bond correction factors. This can be done by inserted Eq. (7) into Eq. (6) whereby 

we find that 

∑ 𝑁𝑒,𝑖
𝑁𝑎
𝑖=1 𝑙𝑛𝐹𝑖

𝑋 =  ∑ 𝑛𝑖⇿𝑗𝑙𝑛
𝑁𝑎
𝑖,𝑗=1 (𝑓𝑖⇿𝑗

𝑋 )                                                                                                            (8) 

where the superscripts on 𝐹𝑖 and 𝑓𝑖⇿𝑗 in Eq. (8) could be exp in which case we will have an equation for the 

experimental atom and bond correction factors, that is Eq. (6). However, it could also be bond in which case 

Eq. (8) shows how to calculate atomic correction factors including only chemical bonding from 𝑓𝑖⇿𝑗
𝑏𝑜𝑛𝑑. 

Hence, Eq. (8) makes it possible to calculate atomic correction factors, and thus from Eq. (7) elemental 

mean excitation energies, from bond correction factors. 

As any molecule has more atoms than bonds, we need more molecules consisting of the same atoms to 

make use of Eq. (8) to calculate 𝐹𝑖
𝑏𝑜𝑛𝑑 from 𝑓𝑖⇿𝑗

𝑏𝑜𝑛𝑑. To illustrate this process, let us consider linear 

hydrocarbons for which we have two kinds of bonds, C-H and C-C in alkanes, C-H and C=C in alkenes and C-

H and C≡C in alkynes. We thus need two equations to determine the two atomic correction factors for 

hydrogen and carbon for the hydrocarbons. It turns out that it does not matter which two hydrocarbons we 

pick for either of the three sets of hydrocarbons. We can thus obtain an analytic expression for the atomic 

correction factor which is independent of the number of carbons in the chain. The results are summarized 

in Table 4. 

 

Table 4. Atomic correction factors for hydrocarbons calculated from Eq. (8) using the bond correction 

factors 𝑓𝑋−𝑌 from ref. [9]. 

Molecule  𝐹𝐻
𝑏𝑜𝑛𝑑, analytical 𝐹𝐻

𝑏𝑜𝑛𝑑 , 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝐹𝐶
𝑏𝑜𝑛𝑑, analytical 𝐹𝐶

𝑏𝑜𝑛𝑑 , 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 

Alkanes, CnH2n+2 𝑓𝐶−𝐻
2 /𝑓𝐶−𝐶  1.40 (𝑓𝐶−𝐶)2/3 1.08 

Alkenes, CnHn+2 𝑓𝐶−𝐻
2 /𝑓𝐶−𝐶  1.40 (𝑓𝐶=𝐶𝑓𝐶−𝐶

2 )1/6 1.05 

Alkynes, CnH2 𝑓𝐶−𝐻
2 /𝑓𝐶−𝐶  1.40 (𝑓𝐶≡𝐶𝑓𝐶−𝐶)1/6 1.07 

 

As the bond correction factors used to calculate the atomic equivalents only include the effect of chemical 

bonding [9], the same will be the case for the computed 𝐹𝑖
𝑏𝑜𝑛𝑑. Comparing the atomic corrections factors 

including all corrections in Table 3 with the ones in Table 4 we see that the effect of chemical bonding gives 

the leading contribution to the hydrogen correction factor but not to 𝐹𝐶. 
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The results in Table 4 also show that the hydrogen correction factor is the same for all three series of 

hydrocarbon but that this is not the case for the correction factor for carbon. The background for this 

difference is that an “atom-in-a-molecule” is not a transferable quantity in the same way as a molecular 

bond is. The hydrogen atoms are in a similar binding situation in the three sets of hydrocarbons but this not 

the case for carbons. Hence, we find different values for the three carbon correction factors. 

 The elemental atomic mean excitation energies determined by Bär et al. [8] are designed to be used for a 

range of compounds for which the atoms are in many different binding situations. The error bars on the 

reported [8] elemental mean excitation energies should hopefully incorporate this uncertainty. The reason 

for 𝐹𝑐
𝑏𝑜𝑛𝑑 in Table 4 being rather different from the one included all corrections in Table 3 is probably that 

the sampling used to determine the carbon elemental mean excitation energies in liquids and solids by  Bär 

et al. [8] include many bonding situations for C that are rather different than the ones one finds in 

hydrocarbons. 

 

7. Summary 

We have compared two different ways of calculating mean excitation energies for large molecules and 

samples using a modified version of Bragg’s rule [5], elemental mean excitation energies [8] and bond and 

atom correction factors [9]. We have reported how to obtain bond and atom correction factors from 

elemental mean excitation energies, that is bond and atom correction factors that include all the effect that 

are included in the experimentally derived elemental mean excitation energies. For the few molecules for 

which we have calculated bond correction factors included both chemical bonding and all the effects 

included by Bär et al. [8] we find rather large differences in the relative importance of the effects of 

chemical bonding. This difference is probably caused by the sampling procedure used by Bär et al. [8] to 

determine the recommended set of elemental mean excitation energies. 

We have also derived an equation that allows determination of elemental mean excitation energies from 

bond correction factors and we have demonstrated how this works for the example of linear hydrocarbons. 

This approach makes it possible to determine how much molecular binding contributes to the 

experimentally derived elemental mean excitation energies. 

We conclude that it is relatively simple to relate to two approaches to each other and that the methods 

contribute with complementary knowledge on the determination of mean excitation energies for large 

samples and molecules. 
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