493 research outputs found

    Observation of atom wave phase shifts induced by van der Waals atom-surface interactions

    Full text link
    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wave-like (coherent) behaviour with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by quantum electrodynamics for a non-retarded van der Waals interaction. This experiment also demonstrates that atom-waves can retain their coherence even when atom-surface distances are as small as 10 nm.Comment: 4 pages, 4 figures, submitted to PR

    Measurement of atomic diffraction phases induced by material gratings

    Full text link
    Atom-surface interactions can significantly modify the intensity and phase of atom de Broglie waves diffracted by a silicon nitride grating. This affects the operation of a material grating as a coherent beam splitter. The phase shift induced by diffraction is measured by comparing the relative phases of serveral interfering paths in a Mach-Zehnder Na atom interferometer formed by three material gratings. The values of the diffraction phases are consistent with a simple model which includes a van der Waals atom-surface interaction between the Na atoms and the silicon nitride grating bars.Comment: 4 pages, 5 figures, submitted to PR

    Phasor analysis of atom diffraction from a rotated material grating

    Full text link
    The strength of an atom-surface interaction is determined by studying atom diffraction from a rotated material grating. A phasor diagram is developed to interpret why diffraction orders are never completely suppressed when a complex transmission function due to the van der Waals interaction is present. We also show that atom-surface interactions can produce asymmetric diffraction patterns. Our conceptual discussion is supported by experimental observations with a sodium atom beam.Comment: 5 pages, 6 figures, submitted to PR

    Is attending lectures still relevant in engineering education?

    Get PDF
    A case study was conducted on a group of undergraduate chemical engineering students to assess the relevance of attending lectures from a student perspective and to understand why these students attend and do not attend lectures with a view to developing approaches to teaching, which are of greater interest and benefit to student learning. The students were surveyed by means of a questionnaire-type survey, which collected both quantitative and qualitative data from them. The majority of students stated that lectures are still very beneficial to their learning and are not an out-of-date mode of education. The major reasons for lecture non-attendance were time priority and curriculum overload issues with other scholarly activities and poor quality teaching. The students provided a number of suggestions to improve lectures and lecture attendance, including the incorporation of active learning in lectures, linking lectures to assessment and adding extra value to what is already in the notes

    Cover slip external cavity diode laser

    Full text link
    The design of a 671 nm diode laser with a mode-hop-free tuning range of 40 GHz is described. This long tuning range is achieved by simultaneously ramping the external cavity length with the laser injection current. The external cavity consists of a microscope cover slip mounted on piezoelectric actuators. In such a configuration the laser output pointing remains fixed, independent of its frequency. Using a diode with an output power of 5-7 mW, the laser linewidth was found to be smaller than 30 MHz. This cover slip cavity and feedforward laser current control system is simple, economical, robust, and easy to use for spectroscopy, as we demonstrate with lithium vapor and lithium atom beam experiments.Comment: 7 pages, 6 figures, submitted to Review of Scientific Instruments 7/29/0

    Working Papers: Astronomy and Astrophysics Panel Reports

    Get PDF
    The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities

    Unintended Environmental Consequences of a Global Biofuels Program

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).Biofuels are being promoted as an important part of the global energy mix to meet the climate change challenge. The environmental costs of biofuels produced with current technologies at small scales have been studied, but little research has been done on the consequences of an aggressive global biofuels program with advanced technologies using cellulosic feedstocks. Here, with simulation modeling, we explore two scenarios for cellulosic biofuels production and find that both could contribute substantially to future global-scale energy needs, but with significant unintended environmental consequences. As the land supply is squeezed to make way for vast areas of biofuels crops, the global landscape is defined by either the clearing of large swathes of natural forest, or the intensification of agricultural operations worldwide. The greenhouse gas implications of land-use conversion differ substantially between the two scenarios, but in both, numerous biodiversity hotspots suffer from serious habitat loss. Cellulosic biofuels may yet serve as a crucial wedge in the solution to the climate change problem, but must be deployed with caution so as not to jeopardize biodiversity, compromise ecosystems services, or undermine climate policy.This study received funding from the MIT Joint Program on the Science and Policy of Global Change, which is supported by a onsortium of government, industry and foundation sponsors

    Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle

    Get PDF
    Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis and two mycangial fungi. The second mutualism involves Tarsonemus mites that are phoretic on D. frontalis ( commensal ), and a blue-staining fungus, Ophiostoma minus. The presence of O. minus reduces beetle larval survival ( antagonistic ) by outcompeting beetle-mutualistic fungi within trees yet supports mite populations by acting as a nutritional mutualist. These linked interactions potentially create an interaction system with the form of an endogenous negative feedback loop. We address four hypotheses: (1) Direct negative feedback: Beetles directly increase the abundance of O. minus, which reduces per capita reproduction of beetles. (2) Indirect negative feedback: Beetles indirectly increase mite abundance, which increases O. minus, which decreases beetle reproduction. (3) The effect of O. minus on beetles depends on mites, but mite abundance is independent of beetle abundance. (4) The effect of O. minus on beetles is independent of beetle and mite abundance. High Tarsonemus and O. minus abundances were strongly correlated with the decline and eventual local extinction of beetle populations. Manipulation experiments revealed strong negative effects of O. minus on beetles, but falsified the hypothesis that horizontal transmission of O. minus generates negative feedback. Surveys of beetle populations revealed that reproductive rates of Tarsonemus, O. minus, and beetles covaried in a manner consistent with strong indirect interactions between organisms. Co-occurrence of mutualisms embedded within a community may have stabilizing effects if both mutualisms limit each other. However, delays and/ or non-linearities in the interaction systems may result in large population fluctuations. © Springer-Verlag 2005

    Biogeography of a plant invasion: drivers of latitudinal variation in enemy release

    Get PDF
    © 2016 John Wiley & Sons Ltd Aim: The relationship between herbivory and latitude may differ between native and invasive plant taxa, which can generate biogeographical heterogeneity in the strength of enemy release. Our aim was to compare latitudinal gradients in herbivory between native and invasive plants and investigate whether gradients are driven by local adaptation or phenotypic plasticity. Location: North America. Methods: Using sympatric native and invasive lineages of the wetland grass Phragmites australis and the specialist gall-fly Lipara rufitarsis, we conducted a field survey to examine whether the relationship between herbivory (the proportion of stems galled) and latitude was parallel between lineages. In a subsequent common garden experiment, we assessed whether latitudinal gradients in herbivory were genetically based or driven by phenotypic plasticity. Results: In the field, L. rufitarsis herbivory on the native P. australis lineage increased from 27% of stems galled in southern populations (36.5°) to 37% in northern populations (43.6°), whereas there was no relationship for the invasive lineage. Similar relationships were evident in the common garden experiment, indicating a genetic basis to latitudinal variation in herbivory. Moreover, the invasive lineage suffered five times less herbivory than the native lineage on average, supporting the enemy release hypothesis. However, a genetic basis to this pattern was absent in the common garden experiment, suggesting that local environmental conditions were responsible for the enemy release observed in nature. Specifically, stem height, diameter and density during the L. rufitarsis oviposition period appeared to be important drivers of herbivory. Main conclusions: Non-parallel gradients in herbivory may help explain the equivocal results of other studies that examine enemy release and biotic resistance at local scales, and can be an important mechanism promoting biogeographical variation in invasion success. We suggest that these latitudinal patterns in herbivory and other species interactions are likely to be a common phenomenon across a range of invaded systems

    Comparison of Multiple Hop Test Kinematics Between Force-Platforms and Video Footage – A Cross Sectional Study

    Get PDF
    Background: Multiple hop performances have been assessed using force-platforms and motion-capture cameras. However, the accessibility of these technologies might be a hindering factor for many performance coaches. Currently, tablet devices are being used as alternatives to measure jumping and hopping performances. Objective: This study aimed to compare multiple hop kinematics using the Kinovea application with force-platforms, the gold standard. Methods: Using an observational cross-sectional study design, male athletes (n=44; age 20.1 ± 1.4 years) completed triple hops (3-Hop) and quintuple hops (5-Hop) on force-platforms while being filmed using an iPad. Ground contact time, flight time and total time were analysed using Kinovea and compared with the force platform data. Results: Statistical analysis showed a high level of agreement across all variables of interest but significant differences (flight time; -2.14 to -5.96 %, ground contact time; 4.89 to 5.83 %, total time; -0.37 to -0.58%) were observed across all variables of interest. A systematic bias for flight and ground contact times were seen for 3-Hop and 5-Hop. Conclusion: The use of iPad and Kinovea application can be used as a valid alternative to measure multiple hop kinematics when performance coaches do not have access to expensive force-platforms or motion-capture cameras
    • …
    corecore