6,923 research outputs found

    Revealing charge-tunneling processes between a quantum dot and a superconducting island through gate sensing

    Full text link
    We report direct detection of charge-tunneling between a quantum dot and a superconducting island through radio-frequency gate sensing. We are able to resolve spin-dependent quasiparticle tunneling as well as two-particle tunneling involving Cooper pairs. The quantum dot can act as an RF-only sensor to characterize the superconductor addition spectrum, enabling us to access subgap states without transport. Our results provide guidance for future dispersive parity measurements of Majorana modes, which can be realized by detecting the parity-dependent tunneling between dots and islands.Comment: 6 pages, 4 figures, supplemental material included as ancillary fil

    Resting state correlates of subdimensions of anxious affect

    Get PDF
    Resting state fMRI may help identify markers of risk for affective disorder. Given the comorbidity of anxiety and depressive disorders and the heterogeneity of these disorders as defined by DSM, an important challenge is to identify alterations in resting state brain connectivity uniquely associated with distinct profiles of negative affect. The current study aimed to address this by identifying differences in brain connectivity specifically linked to cognitive and physiological profiles of anxiety, controlling for depressed affect. We adopted a two-stage multivariate approach. Hierarchical clustering was used to independently identify dimensions of negative affective style and resting state brain networks. Combining the clustering results, we examined individual differences in resting state connectivity uniquely associated with subdimensions of anxious affect, controlling for depressed affect. Physiological and cognitive subdimensions of anxious affect were identified. Physiological anxiety was associated with widespread alterations in insula connectivity, including decreased connectivity between insula subregions and between the insula and other medial frontal and subcortical networks. This is consistent with the insula facilitating communication between medial frontal and subcortical regions to enable control of physiological affective states. Meanwhile, increased connectivity within a frontoparietal-posterior cingulate cortex-precunous network was specifically associated with cognitive anxiety, potentially reflecting increased spontaneous negative cognition (e.g., worry). These findings suggest that physiological and cognitive anxiety comprise subdimensions of anxiety-related affect and reveal associated alterations in brain connectivity

    The housing first model (HFM) fidelity index: designing and testing a tool for measuring integrity of housing programs that serve active substance users

    Get PDF
    Background The Housing First Model (HFM) is an approach to serving formerly homeless individuals with dually diagnosed mental health and substance use disorders regardless of their choice to use substances or engage in other risky behaviors. The model has been widely diffused across the United States since 2000 as a result of positive findings related to consumer outcomes. However, a lack of clear fidelity guidelines has resulted in inconsistent implementation. The research team and their community partner collaborated to develop a HFM Fidelity Index. We describe the instrument development process and present results from its initial testing. Methods The HFM Fidelity Index was developed in two stages: (1) a qualitative case study of four HFM organizations and (2) interviews with 14 HFM "users". Reliability and validity of the index were then tested through phone interviews with staff members of permanent housing programs. The final sample consisted of 51 programs (39 Housing First and 12 abstinence-based) across 35 states. Results The results provided evidence for the overall reliability and validity of the index. Conclusions The results demonstrate the index’s ability to discriminate between housing programs that employ different service approaches. Regarding practice, the index offers a guide for organizations seeking to implement the HFM

    Impact of Short-Range Scattering on the Metallic Transport of Strongly Correlated 2D Holes in GaAs Quantum Wells

    Get PDF
    Understanding the non-monotonic behavior in the temperature dependent resistance, R(T), of strongly correlated two-dimensional (2D) carriers in clean semiconductors has been a central issue in the studies of 2D metallic states and metal-insulator-transitions. We have studied the transport of high mobility 2D holes in 20nm wide GaAs quantum wells (QWs) with varying short-range disorder strength by changing the Al fraction x in the Al_xGa_{1-x}As barrier. Via varying the short range interface roughness and alloy scattering, it is observed that increasing x suppresses both the strength and characteristic temperature scale of the 2D metallicity, pointing to the distinct role of short-range versus long-range disorder in the 2D metallic transport in this correlated 2D hole system with interaction parameter r_s~ 20.Comment: accepted for publication in Phys Rev

    Evolution of Mass Outflow in Protostars

    Full text link
    We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in mid-infrared [Si II], [Fe II] and [S I] line emission, and 11 of these in far-infrared [O I] emission. We use the results to derive their mass outflow rates. Thereby we observe a strong correlation of mass outflow rates with bolometric luminosity, and with the inferred mass accretion rates of the central objects, which continues through the Class 0 range the trend observed in Class II young stellar objects. Along this trend from large to small mass-flow rates, the different classes of young stellar objects lie in the sequence Class 0 -- Class I/flat-spectrum -- Class II, indicating that the trend is an evolutionary sequence in which mass outflow and accretion rates decrease together with increasing age, while maintaining rough proportionality. The survey results include two which are key tests of magnetocentrifugal outflow-acceleration mechanisms: the distribution of the outflow/accretion branching ratio b, and limits on the distribution of outflow speeds. Neither rule out any of the three leading outflow-acceleration, angular-momentum-ejection mechanisms, but they provide some evidence that disk winds and accretion-powered stellar winds (APSWs) operate in many protostars. An upper edge observed in the branching-ratio distribution is consistent with the upper bound of b = 0.6 found in models of APSWs, and a large fraction (0.31) of the sample have branching ratio sufficiently small that only disk winds, launched on scales as large as several AU, have been demonstrated to account for them.Comment: Version submitted to ApJ: 36 pages, 3 tables, 8 figure

    Hubble Space Telescope Observations of the Draco Dwarf Spheroidal

    Get PDF
    We present an F606W-F814W color-magnitude diagram for the Draco dwarf spheroidal galaxy based on Hubble Space Telescope WFPC2 images. The luminosity function is well-sampled to 3 magnitudes below the turn-off. We see no evidence for multiple turnoffs and conclude that, at least over the field of the view of the WFPC2, star formation was primarily single-epoch. If the observed number of blue stragglers is due to extended star formation, then roughly 6% (upper limit) of the stars could be half as old as the bulk of the galaxy. The color difference between the red giant branch and the turnoff is consistent with an old population and is very similar to that observed in the old, metal-poor Galactic globular clusters M68 and M92. Despite its red horizontal branch, Draco appears to be older than M68 and M92 by 1.6 +/- 2.5 Gyrs, lending support to the argument that the ``second parameter'' which governs horizontal branch morphology must be something other than age. Draco's observed luminosity function is very similar to that of M68, and the derived initial mass function is consistent with that of the solar neighborhood.Comment: 16 pages, AASTeX, 9 postscript figures, figures 1 and 2 available at ftp://bb3.jpl.nasa.gov/pub/draco/. Accepted for publication in the Astronomical Journa

    Observations and Implications of the Star Formation History of the LMC

    Full text link
    We present derivations of star formation histories based on color-magnitude diagrams of three fields in the LMC from HST/WFPC2 observations. A significant component of stars older than 4 Gyr is required to match the observed color-magnitude diagrams. Models with a dispersion-free age-metallicity relation are unable to reproduce the width of the observed main sequence; models with a range of metallicity at a given age provide a much better fit. Such models allow us to construct complete ``population boxes'' for the LMC based entirely on color-magnitude diagrams; remarkably, these qualitatively reproduce the age-metallicity relation observed in LMC clusters. We discuss some of the uncertainties in deriving star formation histories. We find, independently of the models, that the LMC bar field has a larger relative component of older stars than the outer fields. The main implications suggested by this study are: 1) the star formation history of field stars appears to differ from the age distribution of clusters, 2) there is no obvious evidence for bursty star formation, but our ability to measure bursts shorter in duration than \sim 25% of any given age is limited by the statistics of the observed number of stars, 3) there may be some correlation of the star formation rate with the last close passage of the LMC/SMC/Milky Way, but there is no dramatic effect, and 4) the derived star formation history is probably consistent with observed abundances, based on recent chemical evolution models.Comment: Accepted by AJ, 36 pages including 12 figure

    WFPC2 Observations of the Cooling Flow Elliptical in Abell 1795

    Get PDF
    We present WFPC2 images of the core of the cooling flow cD galaxy in Abell 1795. An irregular, asymmetric dust lane extends 7 \h75 kpc in projection to the north-northwest. The dust shares the morphology observed in the Hα\alpha and excess UV emission. We see both diffuse and knotty blue emission around the dust lane, especially at the ends. The dust and emission features lie on the edge of the radio lobes, suggesting star formation induced by the radio source or the deflection of the radio jets off of pre-existing dust and gas. We measure an apparent RV_V significantly less than 3.1, implying that the extinction law is not Galactic in the dust lane, or the presence of line emission which is proportional to the extinction. The dust mass is at least 2×105h752\times10^{5} h_{75}^{-2} M\solar\ and is more likely to be 6.5×105h752\times10^{5} h_{75}^{-2} M\solar.Comment: 14 pages, LaTeX, Figure 4 included, Postscript Figs. 1-3 available at ftp://astro.nmsu.edu/pub/JASON/A1795/, accepted for publication in ApJ Letter
    corecore