42 research outputs found

    Dynamics of Viral Evolution and CTL Responses in HIV-1 Infection

    Get PDF
    Improved understanding of the dynamics of host immune responses and viral evolution is critical for effective HIV-1 vaccine design. We comprehensively analyzed Cytotoxic T-lymphocyte (CTL)-viral epitope dynamics in an antiretroviral therapy-naΓ―ve subject over the first four years of HIV-1 infection. We found that CTL responses developed sequentially and required constant antigenic stimulation for maintenance. CTL responses exerting strong selective pressure emerged early and led to rapid escape, proliferated rapidly and were predominant during acute/early infection. Although CTL responses to a few persistent epitopes developed over the first two months of infection, they proliferated slowly. As CTL epitopes were replaced by mutational variants, the corresponding responses immediately declined, most rapidly in the cases of strongly selected epitopes. CTL recognition of epitope variants, via cross-reactivity and de novo responses, was common throughout the period of study. Our data demonstrate that HIV-specific CTL responses, especially in the critical acute/early stage, were focused on regions that are prone to escape. Failure of CTL responses to strongly target functional or structurally critical regions of the virus, as well as the sequential cascade of CTL responses, followed closely by viral escape and decline of the corresponding responses, likely contribute to a lack of sustainable viral suppression. Focusing early and rapidly proliferating CTL on persistent epitopes may be essential for durable viral control in HIV-1 infection

    Variable Fitness Impact of HIV-1 Escape Mutations to Cytotoxic T Lymphocyte (CTL) Response

    Get PDF
    Human lymphocyte antigen (HLA)-restricted CD8+ cytotoxic T lymphocytes (CTL) target and kill HIV-infected cells expressing cognate viral epitopes. This response selects for escape mutations within CTL epitopes that can diminish viral replication fitness. Here, we assess the fitness impact of escape mutations emerging in seven CTL epitopes in the gp120 Env and p24 Gag coding regions of an individual followed longitudinally from the time of acute HIV-1 infection, as well as some of these same epitopes recognized in other HIV-1-infected individuals. Nine dominant mutations appeared in five gp120 epitopes within the first year of infection, whereas all four mutations found in two p24 epitopes emerged after nearly two years of infection. These mutations were introduced individually into the autologous gene found in acute infection and then placed into a full-length, infectious viral genome. When competed against virus expressing the parental protein, fitness loss was observed with only one of the nine gp120 mutations, whereas four had no effect and three conferred a slight increase in fitness. In contrast, mutations conferring CTL escape in the p24 epitopes significantly decreased viral fitness. One particular escape mutation within a p24 epitope was associated with reduced peptide recognition and high viral fitness costs but was replaced by a fitness-neutral mutation. This mutation appeared to alter epitope processing concomitant with a reduced CTL response. In conclusion, CTL escape mutations in HIV-1 Gag p24 were associated with significant fitness costs, whereas most escape mutations in the Env gene were fitness neutral, suggesting a balance between immunologic escape and replicative fitness costs

    Modelling adsorption and biological degradation of nutrients on peat

    No full text
    A dynamic mathematical and numerical model of adsorption and biological degradation of nutrients in an organic perfusion column with recycle has been developed. This model has applicability to industrial applications of biodegradation of nutrients in wastewater such as biofilters and biotrickling filters where concentrations are dilute and solid surface coverage is low. It successfully predicts that adsorption has the effect of masking a 'true' rate of biological degradation behind an 'observed' rate of degradation in the liquid phase. This is due to the adsorptive capacity of peat which provides a buffer for surges in loading and makes peat a useful carrier for engineered biological systems. Four dimensionless parameters were identified to totally describe the physical system without biological activity and a further two were identified for the system with biological activity. Analytical solutions to simplifications of the model were justified by showing that the assumption of a negligible concentration gradient in the column was valid after an initial perturbation in nutrient concentration had passed. Β© 1998 Elsevier Science S.A. All rights reserved

    Evolution of CD8 +

    No full text

    Availability, spatial accessibility, utilisation and the role of telehealth for multi-disciplinary paediatric cerebral palsy services in Queensland

    No full text
    Aims: The purpose of this study was to understand the methods of current delivery of health care services to cerebral palsy (CP) patients in Queensland, Australia. The study also examines the current use of telehealth by clinicians and their perceptions about telehealth use

    Comprehensive Analysis of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific Gamma Interferon-Secreting CD8(+) T Cells in Primary HIV-1 Infection

    No full text
    Human immunodeficiency virus type 1 (HIV-1)-specific CD8(+) T cells provide an important defense in controlling HIV-1 replication, particularly following acquisition of infection. To delineate the breadth and potency of these responses in patients upon initial presentation and before treatment, we determined the fine specificities and frequencies of gamma interferon (IFN-Ξ³)-secreting CD8(+) T cells recognizing all HIV-1 proteins in patients with primary infection. In these subjects, the earliest detected responses were directed predominantly against Nef, Tat, Vpr, and Env. Tat- and Vpr-specific CD8(+) T cells accounted for the greatest frequencies of mean IFN-Ξ³ spot-forming cells (SFC). Nef-specific responses (10 of 21) were more commonly detected. A mean of 2.3 epitopes were recognized with various avidities per subject, and the number increased with the duration of infection (R = 0.47, P = 0.031). The mean frequency of CD8(+) T cells (985 SFC/10(6) peripheral blood mononuclear cells) correlated with the number of epitopes recognized (R = 0.84, P < 0.0001) and the number of HLA-restricting alleles (R = 0.79, P < 0.0001). Neither the total SFC frequencies nor the number of epitopes recognized correlated with the concurrent plasma viral load. Seventeen novel epitopes were identified, four of which were restricted to HLA alleles (A23 and B72) that are common among African descendents. Thus, primary HIV-1 infection induces strong CD8(+)-T-cell immunity whose specificities broaden over time, but their frequencies and breadth do not correlate with HIV-1 containment when examined concurrently. Many novel epitopes, particularly directed to Nef, Tat, and Env, and frequently with unique HLA restrictions, merit further consideration in vaccine design
    corecore