6,109 research outputs found

    Induced resistance to periwinkle grazing in the brown seaweed Fucus vesiculosus (Phaeophyceae): molecular insights and seaweed-mediated effects on herbivore interactions

    Get PDF
    Herbivory is a key factor for controlling seaweed biomass and community structure. To cope with grazers, constitutive and inducible defenses have evolved in macroalgae. Inducible chemical defenses show grazer-specificity and, at the same time, have the potential to mediate interactions among different herbivores. Furthermore, temporal variations in defense patterns, which may adjust antiherbivory responses to grazing pressure, were reported in two brown seaweeds. However, underlying cellular processes are only rudimentarily characterized. To investigate the response of Fucus vesiculosus (L.) to periwinkle (Littorina obtusata) grazing, feeding assays were conducted at several times during a 33 d induction experiment. Underlying cellular processes were analyzed through gene expression profiling. Furthermore, direct processes driving the antiherbivory response to periwinkle grazing and indirect effects on another herbivore, the isopod Idotea baltica, were elucidated. F. vesiculosus showed multiple defense pulses in response to periwinkle grazing, suggesting a high level of temporal variability in antiherbivory traits. Defense induction was accompanied by extensive transcriptome changes. Approximately 400 genes were significantly up-/down-regulated relative to controls, including genes relevant for translation and the cytoskeleton. Genes involved in photosynthesis were mostly downregulated, while genes related to the respiratory chain were up-regulated, indicating alterations in resource allocation. The comparison of genes regulated in response to isopod (previous study) and periwinkle grazing suggests specific induction of several genes by each herbivore. However, grazing by both herbivores induced similar metabolic processes in F. vesiculosus. These common defense-related processes reflected in strong indirect effects as isopods were also repelled after previous grazing by L. obtusata

    Alternative mechanisms of structuring biomembranes: Self-assembly vs. self-organization

    Full text link
    We study two mechanisms for the formation of protein patterns near membranes of living cells by mathematical modelling. Self-assembly of protein domains by electrostatic lipid-protein interactions is contrasted with self-organization due to a nonequilibrium biochemical reaction cycle of proteins near the membrane. While both processes lead eventually to quite similar patterns, their evolution occurs on very different length and time scales. Self-assembly produces periodic protein patterns on a spatial scale below 0.1 micron in a few seconds followed by extremely slow coarsening, whereas self-organization results in a pattern wavelength comparable to the typical cell size of 100 micron within a few minutes suggesting different biological functions for the two processes.Comment: 4 pages, 5 figure

    Short-Pathlength, High-Pressure Flow Cell for Static and Time-Resolved Infrared Spectroscopy Suitable for Supercritical Fluid Solutions Including Hydrothermal Systems

    Get PDF
    An optical flow cell for high pressures and temperatures is described. The use of a novel window design allows for a precise, fixed optical pathlength that can be varied by use of spacers that range from a few micrometers to several millimeters. The cell pathlength is not affected by changes in pressure or temperature. The novel window design may be applicable to other high-pressure spectroscopic cells. The flow-cell design has a minimal sample dead volume, which is important for kinetic studies. The design eliminates the need for brazing or for a soft-sealing material for the optical windows, thereby minimizing the number of materials in contact with the sample. Using only diamond and platinum or platinum alloys as the corrosion resistant materials, the design is optimized for the study of aqueous solutions at high temperatures. Infrared spectra of an aqueous sodium tungstate solution up to 400 °C and 380 bar pressure are presented. Time-resolved infrared data are also presented for the ultraviolet photolysis reaction of ÎČ-naphthoyl azide in supercritical carbon dioxide

    Molecular support for temporal dynamics of induced anti-herbivory defenses in the brown seaweed Fucus Vesiculosus

    Get PDF
    Grazing by the isopod Idotea baltica induces chemical defenses in the brown seaweed Fucus vesiculosus. A combination of a 33 day induction experiment, feeding choice assays and functional genomic analyses was used to investigate temporal defense patterns and to correlate changes in palatability to changes in gene expression. Despite permanent grazing, seaweed palatability varied over time. Controls were significantly more consumed than grazed pieces only after 18 and 27 days of grazing. Relative to controls, 562/402 genes were up-/down-regulated in seaweed pieces that were grazed for 18 days, i.e. when defense induction was detected. Reprogramming of the regulative expression orchestra (translation, transcription), up-regulation of genes involved in lipid and carbohydrate metabolism, intracellular trafficking, defense and stress response, as well as downregulation of photosynthesis was found in grazed seaweed. These findings indicate short-term temporal variation in defenses and that modified gene expression patterns arise at the same time when grazed seaweed pieces show reduced palatability. Several genes with putative defensive functions and cellular processes potentially involved in defence, such as reallocation of resources from primary to secondary metabolism, were reveale

    Bioinformatics prediction of overlapping frameshifted translation products in mammalian transcripts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exceptionally, a single nucleotide sequence can be translated <it>in vivo </it>in two different frames to yield distinct proteins. In the case of the G-protein alpha subunit XL-alpha-s transcript, a frameshifted open reading frame (ORF) in exon 1 is translated to yield a structurally distinct protein called Alex, which plays a role in platelet aggregation and neurological processes. We carried out a novel bioinformatics screen for other possible dual-frame translated sequences, based on comparative genomics.</p> <p>Results</p> <p>Our method searched human, mouse and rat transcripts in frames +1 and -1 for ORFs which are unusually well conserved at the amino acid level. We name these conserved frameshifted overlapping ORFs 'matreshkas' to reflect their nested character. Select findings of our analysis revealed that the G-protein coupled receptor GPR27 is entirely contained within a frame -1 matreshka, thrombopoietin contains a matreshka which spans ~70% of its length, platelet glycoprotein IIIa (ITGB3) contains a matreshka with the predicted characteristics of a secreted peptide hormone, while the potassium channel KCNK12 contains a matreshka spanning >400 amino acids.</p> <p>Conclusion</p> <p>Although the <it>in vivo </it>existence of translated matreshkas has not been experimentally verified, this genome-wide analysis provides strong evidence that substantial overlapping coding sequences exist in a number of human and rodent transcripts.</p

    Network Servers for Multidisciplinary Problem Solving

    Get PDF

    The ACS Virgo Cluster Survey. XIV. Analysis of Color-Magnitude Relations in Globular Cluster Systems

    Get PDF
    We examine the correlation between globular cluster (GC) color and magnitude using HST/ACS imaging for a sample of 79 early-type galaxies (-21.7<M_B<-15.2 mag) with accurate SBF distances from the ACS Virgo Cluster Survey. Using the KMM mixture modeling algorithm, we find a highly significant correlation, d(g-z)/dz = -0.037 +- 0.004, between color and magnitude for the subpopulation of blue GCs in the co-added GC color-magnitude diagram of the three brightest Virgo galaxies (M49, M87 and M60): brighter GCs are redder than their fainter counterparts. For the single GC systems of M87 and M60, we find similar correlations; M49 does not appear to show a significant trend. There is no correlation between (g-z) and M_z for GCs of the red subpopulation. The correlation d(g-z)/dg for the blue subpopulation is much weaker than d(g-z)/dz. Using Monte Carlo simulations, we attribute this to the fact that the blue subpopulation in M_g extends to higher luminosities than the red subpopulation, which biases the KMM fits. The correlation between color and M_z thus is a real effect. This conclusion is supported by biweight fits to the same color distributions. We identify two environmental dependencies of the color-magnitude relation: (1) the slope decreases in significance with decreasing galaxy luminosity; and (2) the slope is stronger for GCs at smaller galactocentric distances. We examine several mechanisms that might give rise to the observed color-magnitude relation: (1) presence of contaminators; (2) accretion of GCs from low-mass galaxies; (3) stochastic effects; (4) capture of field stars by individual GCs; and (5) GC self-enrichment. We conclude that self-enrichment and field-star capture, or a combination of these processes, offer the most promising means of explaining our observations.Comment: 15 pages, 12 figures, accepted for publication in the Astrophysical Journal. Uses emulateapj.cl

    Spectroscopy of Globular Clusters in M81

    Get PDF
    We present moderate-resolution spectroscopy of globular clusters (GCs) around the Sa/Sb spiral galaxy M81 (NGC 3031). Sixteen candidate clusters were observed with the Low Resolution Imaging Spectrograph on the Keck I telescope. All are confirmed as bona fide GCs, although one of the clusters appears to have been undergoing a transient event during our observations. In general, the M81 globular cluster system (GCS) is found to be very similar to the Milky Way (MW) and M31 systems, both chemically and kinematically. A kinematic analysis of the velocities of 44 M81 GCS, (the 16 presented here and 28 from previous work) strongly suggests that the red, metal-rich clusters are rotating in the same sense as the gas in the disk of M81. The blue, metal-poor clusters have halo-like kinematics, showing no evidence for rotation. The kinematics of clusters whose projected galactocentric radii lie between 4 and 8 kpc suggest that they are rotating much more than those which lie outside these bounds. We suggest that these rotating, intermediate-distance clusters are analogous to the kinematic sub-population in the metal-rich, disk GCs observed in the MW and we present evidence for the existence of a similar sub-population in the metal-rich clusters of M31. With one exception, all of the M81 clusters in our sample have ages that are consistent with MW and M31 GCs. One cluster may be as young as a few Gyrs. The correlations between absorption-line indices established for MW and M31 GCs also hold in the M81 cluster system, at least at the upper end of the metallicity distribution (which our sample probes). On the whole, the mean metallicity of the M81 GCS is similar to the metallicity of the MW and M31 GCSs. The projected mass of M81 is similar to the masses of the MW and M31. Its mass profile indicates the presence of a dark matter halo.Comment: 35 pages, including 11 figures and 9 tables. Accepted for publication in the Astronomical Journa

    Decoherence in Josephson Qubits from Dielectric Loss

    Full text link
    Dielectric loss from two-level states is shown to be a dominant decoherence source in superconducting quantum bits. Depending on the qubit design, dielectric loss from insulating materials or the tunnel junction can lead to short coherence times. We show that a variety of microwave and qubit measurements are well modeled by loss from resonant absorption of two-level defects. Our results demonstrate that this loss can be significantly reduced by using better dielectrics and fabricating junctions of small area â‰Č10ÎŒm2\lesssim 10 \mu \textrm{m}^2. With a redesigned phase qubit employing low-loss dielectrics, the energy relaxation rate has been improved by a factor of 20, opening up the possibility of multi-qubit gates and algorithms.Comment: shortened version submitted to PR
    • 

    corecore