
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1997 

Network Servers for Multidisciplinary Problem Solving Network Servers for Multidisciplinary Problem Solving 

Anupam Joshi 

Sanjiva Weerawarana 

Elias N. Houstis 
Purdue University, enh@cs.purdue.edu 

John R. Rice 
Purdue University, jrr@cs.purdue.edu 

Shahani Markus 

Report Number: 
97-023 

Joshi, Anupam; Weerawarana, Sanjiva; Houstis, Elias N.; Rice, John R.; and Markus, Shahani, "Network 
Servers for Multidisciplinary Problem Solving" (1997). Department of Computer Science Technical 
Reports. Paper 1360. 
https://docs.lib.purdue.edu/cstech/1360 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


NETWORK SERVERS FOR MULTIDISCIPLINARY
PROBLEM SOLVING

Anuparn Joshi
Sanjiva Weerawarana

Elias N. Houstis
John R. Rice

Tzvetan T. Drnshansky
Shahani Markus

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD-TR 97·023
April 1997



Network Servers for Multidisciplinary Problem Solving

Anuparn Joshi, Sanjiva Weerawarana. Elias N. Houstis, John R. Rice,

Tzvetan T. Drasbansky and Sbahani Markus

Department of Computer Sciences, Purdue UniversilY, West Lafayette, IN 47907·1398.

Abstract

The evolution of the Intemet into the Global
lnfonnation Infrastructure (GIl) is impacting
many institutions of life in general, and, the way
we view computing in particular. This future
computational and communication infrastruc
ture will allow computing everywhere. Learning
and training simulators will be part ofany class
room and laboratory. The very concept ofclass
room, laboratory and individual workplace will
change; they will become virtual places based
on an array of multimedia devices [1]. We are
developing the software architecture of such an
environment and are working on related
research issues. The advent ofsuch environments
will affect the process of prototyping, which is
part of every scientific inquiry, product design,
and learning activity. The new economic reali
ties require the rapid prototyping of manufac
tured artifacts and rapid solutions to problems
with numerous interrelated elements [2]. This, in
tum, requires the fast, accurate simulation of
physical processes and design optimization
using knowledge and computational models
from multiple disciplines in science and engi
neering. Thus, the realization o/rapid multidis~

ciplinary problem solving or prototyping is the
new grand challenge for Computational Science
and Engineering (CS&E) [3]. We refer ta a soft
ware realization ofmultidisciplinary prototyping
as a Multidisciplinary Problem Solving Envi
ronment (MPSE).

We describe in this paper research that is
needed (and that is on-going at Purdue) to for
mulate and develop a mathematical and soft
ware framework for MPSEs including the tools,
enabling technologies, and underlying theories
needed to support physical prototyping in the
classroom, laboratory, desk, and factory. The
MPSE will utilize the GIl facilities. It will be
adaptable and intelligent with respect to end
users and hardware plat/onns. It will use collab
orating software systems and agent based tech
niques to build demonstration MPSEs which run
on heterogeneous, networked plat/onns. It will
allow wholesale reuse ofsoftware and provide a
natural approach to parallel and distributed
problem solving.

The advent of optical, ATM, and wireless
hardware communication technologies and dis
tributed computing infrastructure like the Web
(WWW) will make the concept "The Network is
the Computer" a reality. We assume that "The
Net" interconnects computational units (ranging
from workstations to massively parallel
machines) and physical instruments. Moreover,
we view the WWW infrastructure as an object
oriented operating system kernel that allows the
development ofan MPSE as a distributed appli
cation utilizing resources and services from
many sources.



1 Introduction

The growth of computational power and net
work bandwidth suggests that computational
mOdeling and experimentation will continue to
grow in importance as a tool for big and small
science. In this scenario, the design process will
operate at the scale of the whole physical sys
tems with a large number of components that
have different shapes, obey different physical
laws and manufacturing constraints, and interact
with each other through geometric and physical
interfaces. We consider multiagent problem
solving systems in scientific computation and, in
particular, strategies that allow scientific com
puting systems to solve problems cooperatively
Over the network. Scientific computation
involves numerical models of real world phe
nomenon, and these models are becoming
increasingly complex. Heretofore, scientific
computing systems have been developed as stan
dalone systems targeted to a particular class of
applications modeled in a somewhat homoge
neous, generic way. However, the real world
consists of physical objects that interact with
each other. The overall behavior of a physical
system is a result of these interactions. Consider
an automobile engine. Its design involves the
domains of thermodynamics (gives the behavior
of the gases in the piston-cylinder assemblies),
mechanics (gives the kinematic and dynamic
behaviors of pistons, links, cranks, etc.), struc
tures (gives the stresses and strains on the parts)
and geometry (gives the shape of the compo
nents and the structural constraints). The optimal
engine design emerges from the interaction of
these different domain-specific analyses. The
different domains share common parameters
across interfaces but each has its own parameters
and constraints. We refer to these multi-compo
nent based physical systems as multidisciplinary
applications.

Realizing this scenario requires the develop
ment of new algorithmic strategies, as well as
software for managing the complexity and har-

vesting the power of the expected high peefor
mance computing and communication (HPCC)
resources. It requires technology to support pro
gramming-in-the-Iarge and to reduce the over
head of HPCC computing. Our research aims to
identify the framework for the numerical simula
tion of multidisciplinary applications and to
develop the enabling theories and technologies
needed to support and realize this framework in
specific applications. Our design objective is to
allow the "natural" specification of multidisci
plinary applications and their simulation with
interacting software components through mathe
matical and software interfaces across networks
of heterogeneous computational resources.

A physical system in the real world normally
consists of a large number of heterogeneous
components. The behavior of each component is
modeled mathematically by a system with vari
ous formulations for the geometry, interface!
boundary!linkage and constraint conditions in
many different geometric regions. It is difficult
to imagine creating a monolithic software sys
tem to model accurately a complicated real prob
lem with hundreds of diverse parts and dozens of
physical phenomena. Therefore, one needs a
software framework which is applicable to a
wide variety of practical problems and allows for
software reuse. Most physical systems and man
ufactured artifacts can be modeled as a mathe
matical network whose nodes represent the
physical components in a system or artifact.
Each node has a mathematical model of the
physics of the component it represents and a
solver agent [4] for its analysis. Individual com
ponents are chosen so that each node corre
sponds to a simple mathematical problem
defined on a regular geometry. There exist many
standard, reliable solver systems that can be
applied to these local node problems. Some
nodes in the network correspond to interfaces
that model the interaction of the parts in the glo
bal model. To solve the global problem, the local
solvers collaborate with each other to resolve the
interface conditions. An interface controller or



mediator agent [4] collects parameters and con
stants from neighboring subdomains and adjusts
these to better satisfy the interface conditions.
This "network" abstraction of a physical system
allows us to build a softw.are system which is a
network of well defined collaborating software
parts using interfaces. Some of the theoretical
issues of this methodology have been addressed
in [6] for the case of collaborating partial differ
ential equation (PDE) models. The results
obtained so far verify the feasibility and poten
tial of network-based prototyping.

Network-based computing [7] is likely to be
the paradigm of the future for solving complex
scientific problems. This viewpoint leads natu
rally to distributed, collaborating, agent based
methodologies. This, in tum, leads to very sub
stantial advantages in both software develop~

ment and quality of service as follows. Servers
export to the user's machine an agent that pro
vides an interactive user interface built on top of
the standard services of the Net. The bulk of the
software and computing is done at the server's or
third party sites using software tailored to a
known and controlled environment. The server
site can, in turn, request services from special
ized resources it knows, e.g., a commercial PDE
solver, a proprietary optimization package, a
1000 node supercomputer, an ad hoc collection
of 122 workstations, a database of physical
properties of materials. Each of these resources
is contacted by an agent with a specific request
for problem solving or information service.
Again, all this collaboration is built on standard
Network services. All of this can be managed
without involving the user, without moving soft
ware to arbitrary platforms, and without reveal
ing source codes. This approach also allows
software reuse for easy software update and evo~

lution, things that are extremely important in
practice. For example, each new automobile
engine normally results in a new software sys
tem. Recreating such a system could easily take
several months or years. In contrast, the execu
tion time to perform the required computation

might only be a few days. Also, a new engine
design often incorporates parts from old designs.
Notice that such a physical change corresponds
to replacing, adding, or deleting a few nodes in
the network with a corresponding change in
interface conditions, and can be easily done. In
such applications each physical component is
viewed both as a physical object and as a soft
ware object. In addition, this mathematical net
work approach is naturally suitable for parallel
and distributed computing as it exploits the par
allelism in physical systems. One can handle
issues like data partition, assignment, and load
balancing on the physics level using the structure
of a given physical system. We believe that this
networked multiagent approach is natural and
direct. It is facilitated by the existence of a multi
tude of standalone scientific problem solving
agents that can effectively model and solve for
the behavior of fairly simple, homogeneous
physical phenomenon. Some of these agents are
no more than subroutine libraries in the classical
sense, others are very much larger and more
sophisticated Problem Solving Environments
(PSEs) [8]. We believe tbat this approach will
allow locally interacting problem solving agents
to decompose a complex computation into a dis
tributed collection of self contained computa
tions. It also allows high scalability.

2 Research Issues

2.1 Domain Specific PSEs

Even in the early 1960s, scientists had begun
to envision problem solving environments not
only powerful enough to solve complex prob
lems, but also able to interact with users on
human terms. The rationale of our research is
that the dream of the 1960s will be the reality of
the 1990s: high performance computers com
bined with better algorithms and better under
standing of computational science have put
PSEs well within our reach.

I



A PSE is a computer system that provides all
the computational facilities needed to solve a
target class of problems. These facilities include
advanced solution methods, automatic selection
of appropriate methods, use of the ~pplication's

language, selection of appropriate hardware and
powerful graphics, symbolic and geometry
based code generation for parallel machines, and
programming-in-the-large. The scope of aPSE
is the extent of the problem set it addresses. This
scope can be very narrow, making the PSE con
struction very simple, but even what appears to
be a modest scope can be a serious scientific
challenge. For example, a PSE for a specific
application has a narrow scope, but is still a
complex challenge as it requires us to incorpo
rate both a computational model and an experi
mental process supported by physical laboratory
instruments. We are also creating a PSE called
PDELab for partial differential equations. This is
a far more difficult area than a specific applica
tion problem and the resulting PSE will be less
powerful (less able to solve all the problems
posed to it), less reliable (less able to guarantee
the correctness of results), but more generic
(more able to "parse" the specifications of many
PDE models). Nevertheless, PDELab will pro
vide a quantum jump in the PDE solving power
delivered into the hands of the working scientist
and engineer.

A substantive research effort is needed to lay
the foundations for building PSEs. This effort
should be directed towards i) a PSE kernel for
building scientific PSEs, ii) a knowledge based
framework to address computational intelligence
issues for PDE based PSEs, iii) infrastructure for
solving PDEs, and iv) parallel PDE methodolo
gies and virtual computational environments.
The description of these proposed tasks can be
found in later in this document.

2.2 MPSEs for Prototyping of Physical
Systems

In simple terms, an MPSE is a framework and
software kernel for combining PSEs for tailored,
flexible multidisciplinary applications. A physi
cal system in the real world normally consists of
a large number of components which have dif
ferent shapes, obey different physica1laws and
manufacturing/design constraints, and interact
through geometric and physical interfaces.
Mathematically, the physical behavior of each
component is modeled by a PDE or ODE system
with various formulations for the geometry,
PDE, ODE, interfacelboundaryllinkage and con
straint conditions in many different geometric
regions. In the case of complicated artifacts such
as the automobile engine, which has literally
hundreds of odd shaped parts and a dozen physi
cal phenomena, it is difficult to imagine creating
a monolithic software system to model accu
rately such a complicated real problem. There
fore, one needs an MPSE mathematical/software
framework which, first, is applicable to a wide
variety of practical problems, second, allows for
software reuse in order to achieve lower costs
and high quality. and, finally, is suitable for
some reasonably fast numerical methods. Most
physical systems and manufactured artifacts can
be modeled as a mathematical network whose
nodes represent the physical components in a
system or artifact. Each node has a mathematical
model of the physics of the component it repre
sents and a solver agent [4] for its analysis. Indi
vidual components are chosen so that each node
corresponds to a simple PDE or ODE problem
defined on a regular geometry.

The network abstraction of a physical system
or artifact allows us to build a software system
which is a network of collaborating well defined
numerical objects through a set of interfaces.
Some of the theoretical issues of this methodol
ogy have been addressed in [5][6] for the case of .
collaborating PDE models. The results obtained



so far verify the feasibility and potential of net
work-based prototyping.

MPSEs must exploit and build on the new
technologies of computing. By the time MPSEs
are operational, the advances in computing
power and the communication infrastructure will
allow ubiquitous high performance computing,
i.e., every where by every one. The designs for
MPSE must be application and user driven. An
MPSE must simultaneously minimize the effort
and maximize the solution power delivered to
researchers, engineers and scientists, students,
and trainees. We do not restrict our design just to
use the current technology of high performance
computers, powerful graphics, modular software
engineering, and advanced algorithms. We see
MPSE as delivering problem solving services
over the Net. This viewpoint leads naturally to
collaborating, agent based methodologies. This,
in tum, leads to very substantial advantages in
both software development and quality of ser
vice as follows. We envision that a user of MPSE
will receive at his location only the user inter
face. Thus the MPSE server will export to the
user's machine an agent that provides an interac
tive user interface built on top of the standard
services of the Net. The bulk of the software and
computing is done at the server's site using soft
ware tailored to a known and controlled environ
ment. The server site can, in tum, request
services from specialized resources it knows,
e.g., a commercial PDE solver, a proprietary
optimization package, a 1000 node supercom
puter, an ad hoc collection of 122 workstations, a
database of physical properties of materials.
Each of these resources is contacted by an agent
from the MPSE with a specific request for prob
lem solving or information service. Again, all
this collaboration is built on standard Network
services. All of this can be managed without
involving the user (if slbe so desires), without
moving software to arbitrary platforms, and
without revealing source codes.

3 Conclusion

Realizing this MPSE technology requires
research advances both in the general structure
and implementation area and in more specific
areas from the applications we consider. For
example, we must design and create the tools
that allow the MPSE agents to collaborate over
the Net. We must create a flexible and general
methodology for interfacing large and heteroge
neous software systems. We must advance the
computational models currently used in applica
tion areas and map them to networked virtual
parallel environments. For example, in on-going
work, we are defining and creating a library
(pDEPack) of PDE solving modules including
classical numerical linear algebra routines and
modem distributed mesh generators and solvers.
We must advance the practice of identifying high
level characteristics of partial differential equa
tions and their use for selecting solutions meth
ods and computing platforms. We must integrate
the physical (wet) laboratory equipment with
simulated mathematical models to create a uni
fied softwarelhardware environment for studying
application areas. We believe that by 2001 the
vision of MPSEs on the Net can be realized by
addressing the problems outlined in this paper.

4 References

[1] W.R. Johnson, Jr., Anything, Anytime, Any
where: The future of networking, in Technology
2001: The future of Compl/ting and Communica
tions, D. Leebaert. editor, MIT Press, Cam
b,idge, MA, (1992).

[2] J.T. Vesey, Speed-to-Market distinguishes the
new competitors, Research Tech. Mgmt., 34
(1991),33-38.

[3] R. G. Voigt, Requirements for multidisciplinary
design of aerospace vehicles on high perfor
mance computers, ICASE RepoI1 No. 89-70,
Sept. 1989,9 pages.

[4] T. Drashansky, A. Joshi and J.R. Rice,
SciAgellts· An Agent Based Environment for
Distributed, Cooperative Scientific Computing,
CSD-TR-95-029, Departmenl of Computer Sci-



ences, Purdue University. Submitted for publica~

tion.
[5] S. McFaddin, An Object Based Problem Solving

Environment for Composite Partial Differential
Equations, Ph.D. thesis, Department of Com
puter Sciences, Purdue University, 1992.

[6J M. Mu and J.R. Rice, Modeling with collaborat
ing PDE solvers - Theory and practice. Contem
porary Mathematics, 180, (1994),427-438.

[7] S. Weerawarana, E.N. Houstis, l.R. Rice, M.G.
Gaitatzes, S. Markus, A. Joshi, 'Web /IELL
PACK: A Networked Computing Service on the
World Wide Web", CSD-TR-96-011, Depart
ment of Computer Sciences, Puurdue University,
1996. Submitted for publication.

[8J E. Gallopoulos, E.N. Houstis, and J.R. Rice,
Computer as thinker/doer: Problem solving envi
ronments for computational science. IEEE
Compo Sci. Engr., 1 (1994), 11-23.


	Network Servers for Multidisciplinary Problem Solving
	Report Number:
	

	tmp.1307986960.pdf.xxbHz

