11 research outputs found

    Virus Prevalence in Egg Samples Collected from Naturally Selected and Traditionally Managed Honey Bee Colonies across Europe

    Get PDF
    Monitoring virus infections can be an important selection tool in honey bee breeding. A recent study pointed towards an association between the virus-free status of eggs and an increased virus resistance to deformed wing virus (DWV) at the colony level. In this study, eggs from both naturally surviving and traditionally managed colonies from across Europe were screened for the prevalence of different viruses. Screenings were performed using the phenotyping protocol of the 'suppressed in ovo virus infection' trait but with qPCR instead of end-point PCR and a primer set that covers all DWV genotypes. Of the 213 screened samples, 109 were infected with DWV, 54 were infected with black queen cell virus (BQCV), 3 were infected with the sacbrood virus, and 2 were infected with the acute bee paralyses virus. It was demonstrated that incidences of the vertical transmission of DWV were more frequent in naturally surviving than in traditionally managed colonies, although the virus loads in the eggs remained the same. When comparing virus infections with queen age, older queens showed significantly lower infection loads of DWV in both traditionally managed and naturally surviving colonies, as well as reduced DWV infection frequencies in traditionally managed colonies. We determined that the detection frequencies of DWV and BQCV in honey bee eggs were lower in samples obtained in the spring than in those collected in the summer, indicating that vertical transmission may be lower in spring. Together, these patterns in vertical transmission show that honey bee queens have the potential to reduce the degree of vertical transmission over time

    Virus Prevalence in Egg Samples Collected from Naturally Selected and Traditionally Managed Honey Bee Colonies across Europe

    Get PDF
    Monitoring virus infections can be an important selection tool in honey bee breeding. A recent study pointed towards an association between the virus-free status of eggs and an increased virus resistance to deformed wing virus (DWV) at the colony level. In this study, eggs from both naturally surviving and traditionally managed colonies from across Europe were screened for the prevalence of different viruses. Screenings were performed using the phenotyping protocol of the ‘suppressed in ovo virus infection’ trait but with qPCR instead of end-point PCR and a primer set that covers all DWV genotypes. Of the 213 screened samples, 109 were infected with DWV, 54 were infected with black queen cell virus (BQCV), 3 were infected with the sacbrood virus, and 2 were infected with the acute bee paralyses virus. It was demonstrated that incidences of the vertical transmission of DWV were more frequent in naturally surviving than in traditionally managed colonies, although the virus loads in the eggs remained the same. When comparing virus infections with queen age, older queens showed significantly lower infection loads of DWV in both traditionally managed and naturally surviving colonies, as well as reduced DWV infection frequencies in traditionally managed colonies. We determined that the detection frequencies of DWV and BQCV in honey bee eggs were lower in samples obtained in the spring than in those collected in the summer, indicating that vertical transmission may be lower in spring. Together, these patterns in vertical transmission show that honey bee queens have the potential to reduce the degree of vertical transmission over time

    Comparison of two alternative store formats using a Malmquist-type index

    Get PDF
    This paper explores the differences in performance between two groups of retailing stores that operate with different formats. The study uses a Malmquist-type index to distinguish internal inefficiencies from those associated with the group (or format) characteristics. A fundamental characteristic of the new index is to compare groups in a static setting. The study described in this paper combines the use of the Malmquist index with statistical tests. The Malmquist-type index is decomposed into sub-indexes for comparing the efficiency spread between groups and the productivity differences between the best-practice frontiers of the groups. The hypothesis tests are used to verify if the differences between groups captured by the Malmquist-type index and its components are statistically significant. There are several methods based on DEA for comparing the performance of two groups, such as the program efficiency method and the comparison of efficiency distributions using statistical hypothesis tests. The method used in this paper is compared with the existing approaches to highlight its strengths and weaknesses. The applicability of the method is illustrated with a case study that compares the performance of heavy bazaar stores (that sell electrical appliances and consumer electronics) with different formats (megastores versus superstores). The study showed that the overall performance of megastores is better due to the effect of a more productive frontier. However, the efficiency spread is larger in megastores than in superstores meaning that there is scope for efficiency improvements

    Biochemical effects of high intensity constant magnetic fields on worker honey bees

    No full text
    International audienc

    Selection for outbreeding in Varroa parasitising resistant honey bee (Apis mellifera) colonies

    Get PDF
    Parasitism is expected to select for counter-adaptations in the host: driving a coevolutionary arms race. However, human interference between honey bees (Apis mellifera) and Varroa mites removes the effect of natural selection and restricts the evolution of host counter-adaptations. With full-sibling mating common among Varroa, this can rapidly select for virulent, highly inbred, Varroa populations. We investigated how the evolution of host resistance could affect the infesting population of Varroa mites. We screened a Varroa-resistant honey bee population near Toulouse, France, for a Varroa resistance trait: the inhibition of Varroa's reproduction in drone pupae. We then genotyped Varroa which had co-infested a cell using microsatellites. Across all resistant honey bee colonies, Varroa's reproductive success was significantly higher in co-infested cells but the distribution of Varroa between singly and multiply infested cells was not different from random. While there was a trend for increased reproductive success when Varroa of differing haplotypes co-infested a cell, this was not significant. This suggests local mate competition, through the presence of another Varroa foundress in a pupal cell, may be enough to help Varroa overcome host resistance traits; with a critical mass of infesting Varroa overwhelming host resistance. However, the fitness trade-offs associated with preferentially co-infesting cells may be too high for Varroa to evolve a mechanism to identify already-infested cells. The increased reproductive success of Varroa when co-infesting resistant pupal cells may act as a release valve on the selective pressure for the evolution of counter resistance traits: helping to maintain a stable host–parasite relationship.Deutsche Forschungsgemeinschaft. Publication costs were financially supported by the Open Access Publication Fund of the Martin-Luther-University Halle-Wittenberg.http://www.ecolevol.orgam2020Zoology and Entomolog

    A gene for resistance to the Varroa mite (Acari) in honey bee (Apis mellifera) pupae

    No full text
    Social insect colonies possess a range of defences which protect them against highly virulent parasites and colony collapse. The host–parasite interaction between honey bees (Apis mellifera) and the mite Varroa destructor is unusual, as honey bee colonies are relatively poorly defended against this parasite. The interaction has existed since the mid‐20th Century, when Varroa switched host to parasitize A. mellifera. The combination of a virulent parasite and relatively naïve host means that, without acaricides, honey bee colonies typically die within 3 years of Varroa infestation. A consequence of acaricide use has been a reduced selective pressure for the evolution of Varroa resistance in honey bee colonies. However, in the past 20 years, several natural‐selection‐based breeding programmes have resulted in the evolution of Varroa‐resistant populations. In these populations, the inhibition of Varroa's reproduction is a common trait. Using a high‐density genome‐wide association analysis in a Varroa‐resistant honey bee population, we identify an ecdysone‐induced gene significantly linked to resistance. Ecdysone both initiates metamorphosis in insects and reproduction in Varroa. Previously, using a less dense genetic map and a quantitative trait loci analysis, we have identified Ecdysone‐related genes at resistance loci in an independently evolved resistant population. Varroa cannot biosynthesize ecdysone but can acquire it from its diet. Using qPCR, we are able to link the expression of ecdysone‐linked resistance genes to Varroa's meals and reproduction. If Varroa co‐opts pupal compounds to initiate and time its own reproduction, mutations in the host's ecdysone pathway may represent a key selection tool for honey bee resistance and breeding.The Deutsche Forschungsgemeinschaft (RO 5121/1‐1 to J.R.) and the Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (Proiecte de Cercetare Exploratorie GRAL to R.F.A.M. and D.S.D.).https://onlinelibrary.wiley.com/journal/1365294x2020-06-01hj2020Zoology and Entomolog

    Selection for outbreeding in Varroa parasitising resistant honey bee (Apis mellifera) colonies

    Get PDF
    Abstract Parasitism is expected to select for counter‐adaptations in the host: driving a coevolutionary arms race. However, human interference between honey bees (Apis mellifera) and Varroa mites removes the effect of natural selection and restricts the evolution of host counter‐adaptations. With full‐sibling mating common among Varroa, this can rapidly select for virulent, highly inbred, Varroa populations. We investigated how the evolution of host resistance could affect the infesting population of Varroa mites. We screened a Varroa‐resistant honey bee population near Toulouse, France, for a Varroa resistance trait: the inhibition of Varroa’s reproduction in drone pupae. We then genotyped Varroa which had co‐infested a cell using microsatellites. Across all resistant honey bee colonies, Varroa’s reproductive success was significantly higher in co‐infested cells but the distribution of Varroa between singly and multiply infested cells was not different from random. While there was a trend for increased reproductive success when Varroa of differing haplotypes co‐infested a cell, this was not significant. This suggests local mate competition, through the presence of another Varroa foundress in a pupal cell, may be enough to help Varroa overcome host resistance traits; with a critical mass of infesting Varroa overwhelming host resistance. However, the fitness trade‐offs associated with preferentially co‐infesting cells may be too high for Varroa to evolve a mechanism to identify already‐infested cells. The increased reproductive success of Varroa when co‐infesting resistant pupal cells may act as a release valve on the selective pressure for the evolution of counter resistance traits: helping to maintain a stable host–parasite relationship

    Virus Prevalence in Egg Samples Collected from Naturally Selected and Traditionally Managed Honey Bee Colonies across Europe

    No full text
    Monitoring virus infections can be an important selection tool in honey bee breeding. A recent study pointed towards an association between the virus-free status of eggs and an increased virus resistance to deformed wing virus (DWV) at the colony level. In this study, eggs from both naturally surviving and traditionally managed colonies from across Europe were screened for the prevalence of different viruses. Screenings were performed using the phenotyping protocol of the ‘suppressed in ovo virus infection’ trait but with qPCR instead of end-point PCR and a primer set that covers all DWV genotypes. Of the 213 screened samples, 109 were infected with DWV, 54 were infected with black queen cell virus (BQCV), 3 were infected with the sacbrood virus, and 2 were infected with the acute bee paralyses virus. It was demonstrated that incidences of the vertical transmission of DWV were more frequent in naturally surviving than in traditionally managed colonies, although the virus loads in the eggs remained the same. When comparing virus infections with queen age, older queens showed significantly lower infection loads of DWV in both traditionally managed and naturally surviving colonies, as well as reduced DWV infection frequencies in traditionally managed colonies. We determined that the detection frequencies of DWV and BQCV in honey bee eggs were lower in samples obtained in the spring than in those collected in the summer, indicating that vertical transmission may be lower in spring. Together, these patterns in vertical transmission show that honey bee queens have the potential to reduce the degree of vertical transmission over time
    corecore