21 research outputs found

    Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource

    Get PDF
    INTRODUCTION: The Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab) is a multidisciplinary, collaborative framework for the investigation of familial breast cancer. Based in Australia, the primary aim of kConFab is to facilitate high-quality research by amassing a large and comprehensive resource of epidemiological and clinical data with biospecimens from individuals at high risk of breast and/or ovarian cancer, and from their close relatives. METHODS: Epidemiological, family history and lifestyle data, as well as biospecimens, are collected from multiple-case breast cancer families ascertained through family cancer clinics in Australia and New Zealand. We used the Tyrer-Cuzick algorithms to assess the prospective risk of breast cancer in women in the kConFab cohort who were unaffected with breast cancer at the time of enrolment in the study. RESULTS: Of kConFab's first 822 families, 518 families had multiple cases of female breast cancer alone, 239 had cases of female breast and ovarian cancer, 37 had cases of female and male breast cancer, and 14 had both ovarian cancer as well as male and female breast cancer. Data are currently held for 11,422 people and germline DNAs for 7,389. Among the 812 families with at least one germline sample collected, the mean number of germline DNA samples collected per family is nine. Of the 747 families that have undergone some form of mutation screening, 229 (31%) carry a pathogenic or splice-site mutation in BRCA1 or BRCA2. Germline DNAs and data are stored from 773 proven carriers of BRCA1 or BRCA1 mutations. kConFab's fresh tissue bank includes 253 specimens of breast or ovarian tissue – both normal and malignant – including 126 from carriers of BRCA1 or BRCA2 mutations. CONCLUSION: These kConFab resources are available to researchers anywhere in the world, who may apply to kConFab for biospecimens and data for use in ethically approved, peer-reviewed projects. A high calculated risk from the Tyrer-Cuzick algorithms correlated closely with the subsequent occurrence of breast cancer in BRCA1 and BRCA2 mutation positive families, but this was less evident in families in which no pathogenic BRCA1 or BRCA2 mutation has been detected

    Automated High-Content Live Animal Drug Screening Using C. elegans Expressing the Aggregation Prone Serpin α1-antitrypsin Z

    Get PDF
    The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in α1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling α1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms

    Evidence of a Chiral Superstructure in the Discotic Mesophase of an Optically Active Phthalocyanine

    Get PDF
    In the liquid crystalline phase of optically active phthalocyanine (S)-1 the columns are helically distorted, as has been shown by circular dichroism experiments on a Langmuir-Blodgett film of (S)-1 and by small angle X-ray diffraction studies, and confirmed by time-resolved microwave conductivity measurements.
    corecore