1,045 research outputs found

    Mass Flows in Cometary UCHII Regions

    Full text link
    High spectral and spatial resolution, mid-infrared fine structure line observations toward two ultracompact HII (UCHII) regions (G29.96 -0.02 and Mon R2) allow us to study the structure and kinematics of cometary UCHII regions. In our earlier study of Mon R2, we showed that highly organized mass motions accounted for most of the velocity structure in that UCHII region. In this work, we show that the kinematics in both Mon R2 and G29.96 are consistent with motion along an approximately paraboloidal shell. We model the velocity structure seen in our mapping data and test the stellar wind bow shock model for such paraboloidal like flows. The observations and the simulation indicate that the ram pressures of the stellar wind and ambient interstellar medium cause the accumulated mass in the bow shock to flow along the surface of the shock. A relaxation code reproduces the mass flow's velocity structure as derived by the analytical solution. It further predicts that the pressure gradient along the flow can accelerate ionized gas to a speed higher than that of the moving star. In the original bow shock model, the star speed relative to the ambient medium was considered to be the exit speed of ionized gas in the shell.Comment: 34 pages, including 14 figures and 1 table, to be published in ApJ, September 200

    The Big Five, Learning Goals, Exam Preparedness, and Preference for Flipped Classroom Teaching: Evidence from a Large Psychology Undergraduate Cohort

    Get PDF
    Previous research has found that the flipped classroom (i.e., learning prior to the lecture, and using the lecture time for consolidating knowledge) increases students’ deep learning, and has an association with improved grades. However, not all students benefit equally from flipping the classroom, and there may be important individual differences that influence preference for different teaching styles. In the present study, undergraduate Psychology students ( n = 200) answered questions about exam preparedness, learning goals, preference for the traditional or flipped classroom, and the Big Five of personality. We found that preference for the flipped classroom had a significant, positive association with agreeableness and the mastery goal. Preference for the traditional lecture was predicted by beliefs about exam preparedness. The results are discussed with a reference to the Big Five paradigm in the context of learning and teaching. </jats:p

    A massive cluster of Red Supergiants at the base of the Scutum-Crux arm

    Full text link
    We report on the unprecedented Red Supergiant (RSG) population of a massive young cluster, located at the base of the Scutum-Crux Galactic arm. We identify candidate cluster RSGs based on {\it 2MASS} photometry and medium resolution spectroscopy. With follow-up high-resolution spectroscopy, we use CO-bandhead equivalent width and high-precision radial velocity measurements to identify a core grouping of 26 physically-associated RSGs -- the largest such cluster known to-date. Using the stars' velocity dispersion, and their inferred luminosities in conjuction with evolutionary models, we argue that the cluster has an initial mass of \sim40,000\msun, and is therefore among the most massive in the galaxy. Further, the cluster is only a few hundred parsecs away from the cluster of 14 RSGs recently reported by Figer et al (2006). These two RSG clusters represent 20% of all known RSGs in the Galaxy, and now offer the unique opportunity to study the pre-supernova evolution of massive stars, and the Blue- to Red-Supergiant ratio at uniform metallicity. We use GLIMPSE, MIPSGAL and MAGPIS survey data to identify several objects in the field of the larger cluster which seem to be indicative of recent region-wide starburst activity at the point where the Scutum-Crux arm intercepts the Galactic bulge. Future abundance studies of these clusters will therefore permit the study of the chemical evolution and metallicity gradient of the Galaxy in the region where the disk meets the bulge.Comment: 49 pages, 22 figures. Accepted for publication in ApJ. Version with hi-res figures can be found at http://www.cis.rit.edu/~bxdpci/RSGC2.pd

    Are Debris Disks and Massive Planets Correlated?

    Get PDF
    Using data from the Spitzer Space Telescope Legacy Science Program ``Formation and Evolution of Planetary Systems'' (FEPS), we have searched for debris disks around 9 FGK stars (2-10 Gyr), known from radial velocity (RV) studies to have one or more massive planets. Only one of the sources, HD 38529, has excess emission above the stellar photosphere; at 70 micron the signal-to-noise ratio in the excess is 4.7 while at wavelengths < 30 micron there is no evidence of excess. The remaining sources show no excesses at any Spitzer wavelengths. Applying survival tests to the FEPS sample and the results for the FGK survey published in Bryden et al. (2006), we do not find a significant correlation between the frequency and properties of debris disks and the presence of close-in planets. We discuss possible reasons for the lack of a correlation.Comment: 24 pages, 3 figures. Accepted to Astrophysical Journa

    Trace-element abundances in the shallow lithospheric mantle of the North Atlantic Craton margin: implications for melting and metasomatism beneath Northern Scotland

    Get PDF
    Bulk rock geochemistry and major- and trace-element compositions of clinopyroxene have been determined for three suites of peridotitic mantle xenoliths from the North Atlantic Craton (NAC) in northern Scotland, to establish the magmatic and metasomatic history of subcontinental lithospheric mantle (SCLM) below this region. Spinel lherzolites from the southernmost locality (Streap Com'laidh) have non-NAC mantle compositions, while the two northern xenolith suites (Loch Roag and Rinibar) are derived from the thinned NAC marginal keel. Clinopyroxene compositions have characteristic trace-element signatures which show both 'primary' and 'metasomatic' origins. We use Zr and Hf abundances to identify ancient cryptic refertilization in 'primary' clinopyroxenes. We suggest that Loch Roag and Rinibar peridotite xenoliths represent an ancient Archaean-Palaeoproterozoic SCLM with original depleted cratonic signatures which were overprinted by metasomatism around the time of intrusion of the Scourie Dyke Swarm (∼2.4 Ga). This SCLM keel was preserved during Caledonian orogenesis, although some addition of material and/or metasomatism probably also occurred, as recorded by Rinibar xenoliths. Rinibar and Streap xenoliths were entrained in Permo-Carboniferous magmas and thus were isolated from the SCLM ∼200 Ma before Loch Roag xenoliths (in an Eocene dyke). Crucially, despite their geographical location, lithospheric mantle peridotite samples from Loch Roag show no evidence of recent melting or refertilization during the Palaeogene opening of the Atlantic

    Compact HI clouds from the GALFA-HI survey

    Full text link
    The Galactic Arecibo L-band Feed Array HI (GALFA-HI) survey is mapping the entire Arecibo sky at 21-cm, over a velocity range of -700 to +700 km/s (LSR), at a velocity resolution of 0.18 km/s and a spatial resolution of 3.5 arcmin. The unprecedented resolution and sensitivity of the GALFA-HI survey have resulted in the detection of numerous isolated, very compact HI clouds at low Galactic velocities, which are distinctly separated from the HI disk emission. In the limited area of ~4600 deg2^2 surveyed so far, we have detected 96 of such compact clouds. The detected clouds are cold with a median Tk,max_{k,max} (the kinetic temperature in the case in which there is no non-thermal broadening) of 300 K. Moreover, these clouds are quite compact and faint, with median values of 5 arcmin in angular size, 0.75 K in peak brightness temperature, and 5×10185 \times 10^{18} cm2^{-2} in HI column density. Most of the clouds deviate from Galactic rotation at the 20-30 km/s level, and a significant fraction show evidence for a multiphase medium and velocity gradients. No counterparts for these clouds were found in other wavebands. From the modeling of spatial and velocity distributions of the whole compact cloud population, we find that the bulk of the compact clouds are related to the Galactic disk, and their distances are likely to be in the range of 0.1 to a few kpc. We discuss various possible scenarios for the formation and maintenance of this cloud population and its significance for Galactic ISM studies.Comment: Accepted for publication in the Astrophysical Journa

    Molecular Gas in the z=1.2 Ultraluminous Merger GOODS J123634.53+621241.3

    Get PDF
    We report the detection of CO(2-1) emission from the z=1.2 ultraluminous infrared galaxy (ULIRG) GOODS J123634.53+621241.3 (also known as the sub-millimeter galaxy GN26). These observations represent the first discovery of high-redshift CO emission using the new Combined Array for Research in Millimeter-Wave Astronomy (CARMA). Of all high-redshift (z>1) galaxies within the GOODS-North field, this source has the largest far-infrared (FIR) flux observed in the Spitzer 70um and 160um bands. The CO redshift confirms the optical identification of the source, and the bright CO(2-1) line suggests the presence of a large molecular gas reservoir of about 7x10^10 M(sun). The infrared-to-CO luminosity ratio of L(IR)/L'(CO) = 80+/-30 L(sun) (K Km/s pc^2)^-1 is slightly smaller than the average ratio found in local ULIRGs and high-redshift sub-millimeter galaxies. The short star-formation time scale of about 70 Myr is consistent with a starburst associated with the merger event and is much shorter than the time scales for spiral galaxies and estimates made for high-redshift galaxies selected on the basis of their B-z and z-K colors.Comment: Accepted for publication in ApJ Letter

    The Complete Census of 70-um-Bright Debris Disks within the FEPS (Formation and Evolution of Planetary Systems) Spitzer Legacy Survey of Sun-like Stars

    Get PDF
    (abbreviated) We report detection with the Spitzer Space Telescope of cool dust surrounding solar type stars. The observations were performed as part of the Legacy Science Program, ``Formation and Evolution of Planetary Systems'' (FEPS). From the overall FEPS sample (Meyer et al. 2006) of 328 stars having ages ~0.003-3 Gyr we have selected sources with 70 um flux densities indicating excess in their spectral energy distributions above expected photospheric emission........ .....The rising spectral energy distributions towards - and perhaps beyond - 70 um imply dust temperatures T_dust <45-85 K for debris in equilibrium with the stellar radiation field. We infer bulk properties such as characteristic temperature, location, fractional luminosity, and mass of the dust from fitted single temperature blackbody models. For >1/3 of the debris sources we find that multiple temperature components are suggested, implying a spatial distribution of dust extending over many tens of AU. Because the disks are dominated by collisional processes, the parent body (planetesimal) belts may be extended as well. Preliminary assessment of the statistics of cold debris around sun-like stars shows that ~10% of FEPS targets with masses between 0.6 and 1.8 Msun and ages between 30 Myr and 3 Gyr exhibit 70 um emission in excess of the expected photospheric flux density. We find that fractional excess amplitudes appear higher for younger stars and that there may be a trend in 70 um excess frequency with stellar mass.Comment: article accepted to Ap
    corecore