185 research outputs found

    The use of holographic optical elements (HOE's) to investigate the use of a flat irradiance profile in the control of heat absorption in wire-fed laser cladding

    Get PDF
    This work investigates the use of holographic optical elements (HOE's) to control the applied heat profile and thermal absorption of a wire used for laser cladding. The two thermal distributions compared were a circular beam with a Gaussian heat profile (Gaussian beam) and a square beam with a flat profile (pedestal beam). Heat absorption calculations between these were carried out to show the potential differences in absorption, with empirical results created to show how the differences in absorption affect the cladding properties. Micrographs of the clad cross-sections were created using optical microscopy and were analysed with respect to wetting angle and clad dilution. These results were compared to an alternative method of applying an even beam profile; enlarging the Gaussian beam relative to the wire diameter. The results showed that the use of a HOE to create a more even beam profile gave superior wetting behaviour and less dilution

    Complex beam profiles for laser annealing of thin-film CdTe photovoltaics

    Get PDF
    Within the family of thin-film photovoltaics (PV), cadmium telluride (CdTe) has the fastest growing market share due to its high efficiencies and low cost. However, as with other PV technologies, the energy required to manufacture the panels is excessive, encompassing high environmental impact and manufacturing energy payback times of the order of 2-3 years. As part of the manufacturing process, the panels are annealed at temperatures of approximately 400°C for 30 minutes, which is inherently inefficient. Laser heating has previously been investigated as an alternative process for thin film annealing, due to its advantages with regard to its ability to localise heat treatment, anneal selectively and its short processing time. In this investigation, results focussing on improvements to the laser-based annealing process, designed to mitigate panel damage by excessive thermal gradients, are presented. Simulations of various laser beam profiles are created in COMSOL and used to demonstrate the benefit of laser beam shaping for thin film annealing processes. An enabling technology for this, the holographic optical element (HOE), is then used to experimentally demonstrate the redistribution of laser beam energy into an optimal profile for annealing, eliminating thermal concentrations

    Using wire shaping techniques and holographic optics to optimise deposition characteristics in wire-based laser cladding

    Get PDF
    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure

    The use of holographic optics for heat flow control in wire-based laser cladding

    Get PDF
    Laser cladding with wire utilises a focussing lens to melt the surface of the substrate, into which the wire is fed to build up a clad track on the surface. Process reliablity issues in practice include; clad tracks with high levels of dilution, surface cracking and other defects. Key to this is wire reflectivity calculations. Here using Fresnel equations that relate angle of incidence to heat absorption, we are able to show a direct correlation between the applied heat profile of the laser beam and the absorption profile of the wire surface; this has been modelled using COMSOL multiphysics conduction simulations which showed that the heat profile of the applied laser beam has a direct effect on the size and shape of the resulting melt pool. Using computer generated Holographic Optical Elements (HOE), a novel form of optic that alters the heat profile of the laser beam to a user-specified 3d profile, a conventional 1.25 mm diameter Gaussian beam shape and a 1.25 mm square uniform ‘pedestal’ HOE-derived beam shape were tested and compared, using a 1 mm diameter AISI 316 stainless steel wire on a 0.8mm mild steel substrate. These results were also compared to an enlarged 3.5 mm diameter Gaussian beam, in order to evaluate different methods of altering the heat distribution applied to the wire. The HOE generated beam gave superior results, due to its shorter thermal cycle, which reduced the amount of heat going into the clad track and resulted in lower dilution

    Annealing of thin-film cadmium telluride photovoltaics using holographically controlled laser processing

    Get PDF
    CdTe-based thin film solar cells currently represent one of the fastest growing PV technologies, with a superior combination of efficiency, energy payback time and lifecycle environmental impact. However, the current post-deposition annealing treatment is still an energy intensive step of the manufacturing process. A novel method is presented for annealing of CdTe using a high-power diode laser (35 W, 808 nm) for thermal post-processing, combined with holographic optical elements (HOE’s) for laser beam heat flow control. The advantage of a laser for annealing lies in its ability to selectively heat only the surface of the CdTe solar cell; improving energy efficiency, process speed and energy resilience. Heat transfer simulations were used to predict the effects of different laser irradiance profiles on the annealing process thermal cycle influence the experimental design and predict optimal laser irradiance profiles. Variations in power and process speed on as-deposited and MgCl2-treated close-space sublimated (CSS) CdTe samples have been performed. The results were characterised using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Optical properties were analysed with a spectrophotometer and ellipsometric spectroscopy (SE). The laser annealing treatment was found to be effective in promoting Chlorine diffusion and improving the optical and morphological properties of CdTe thin film device

    Use of laser beam diffraction for non-invasive characterisation of CdTe thin film growth structure

    Get PDF
    Characterisation of Cadmium Telluride (CdTe) thin films commonly requires the use of invasive techniques for the identification of their structural growth and the detection of defects which occur during the deposition process. Structural growth and the presence of defects can affect the performance of the final device. A non-invasive inspection system for CdTe films has been developed to identify the structural properties of this material, comparing two different deposition techniques, Close Space Sublimation (CSS) and Magnetron Sputtering (MS). The proposed system utilises a 1 μm diode laser which passes through the CdTe layer, originating detectable diffraction patterns, which are characterised using image processing techniques and assessed using a neural network-based cognitive decision-making support system. Results are found to be consistent with the conventional microscopic techniques (SEM and TEM) used to analyse morphological and structural properties of thin-film CdTe solar cells

    Laser annealing of thin film CdTe solar cells using a 808 nm diode laser

    Get PDF
    © 2017 IEEE. We report on the effect of a new laser annealing treatment for thin film CdTe solar cells using a 808 nm diode laser. As-deposited, laser annealed and MgCl2treated/laser annealed CdTe thin films have been analysed. One part of the work has been focused on understanding the efficacy of the activation treatment by laser annealing. The results show partial chlorine diffusion and associated partial re-crystallisation of the absorber. The second part of this work has been focused on the effect of the treatment on the chemical composition of the CdTe surface. It has been found that the process also contributes to the formation of a Te-rich layer on the surface of the CdTe absorber, which may provide a useful process to produce a back contact. This paper reveals the effect of the laser treatment on the microstructural properties of the CdTe absorber material. The microstructure has been analysed using STEM/EDX, HRTEM and XRD. Further work is required to optimise the process but it has the potential to provide much greater control than current activation methods and also to provide a Te back contact suitable for CdTe solar cells

    Brief Report: A Phase II Study of Sunitinib in Malignant Pleural Mesothelioma. The NCIC Clinical Trials Group

    Get PDF
    IntroductionMalignant pleural mesothelioma (MPM) is an aggressive malignancy that most often presents at an advanced, incurable stage. After the failure of standard first-line cisplatin/antifolate chemotherapy, there is no accepted treatment. The vascular endothelial growth factor pathway may be a relevant therapeutic target in MPM.MethodsThis open-labeled phase II trial evaluated single-agent sunitinib, an inhibitor of multiple receptor tyrosine kinases including the vascular endothelial growth factor receptors, given at 50 mg daily orally for 4 weeks followed by a 2-week rest, in patients with advanced MPM. Two cohorts were studied: cohort 1, in which patients had previously received cisplatin-based chemotherapy, and cohort 2, consisting of previously untreated patients. A two-stage design was used for both cohorts; the primary outcome was objective response rate as determined by the RECIST criteria modified for MPM. Secondary outcomes included rates and duration of disease control, progression-free survival and overall survival, and safety and tolerability.ResultsA total of 35 eligible patients were enrolled (17 to cohort 1 and 18 to cohort 2). Neither cohort met the criteria for continuing to the second stage of accrual; only one objective response, confirmed by independent review, was observed in a previously untreated patient. Median progression-free and overall survivals were 2.8 and 8.3 months in cohort 1, and 2.7 and 6.7 months in cohort 2, respectively. Observed toxicity was within that expected for sunitinib.ConclusionsSunitinib, similar to other angiogenesis inhibitors, has limited activity in MPM. Future trials of angiogenesis inhibitors given as single agents in unselected patients with MPM are not warranted

    Identifying the configurational paths to innovation in SMEs:a fuzzy-set qualitative comparative analysis

    Get PDF
    Using fuzzy-set qualitative comparative analysis (fsQCA), this study investigates the conditions leading to a higher level of innovation. More specifically, the study explores the impact of inter-organisational knowledge transfer networks and organisations' internal capabilities on different types of innovation in Small to Medium size Enterprises (SMEs) in the high-tech sector. A survey instrument was used to collect data from a sample of UK SMEs. The findings show that although individual factors are important, there is no need for a company to perform well in all the areas. The fsQCA, which enables the examination of the impacts of different combinations of factors, reveals that there are a number of paths to achieve better incremental and radical innovation performance. Companies need to choose the one that is closest to their abilities and fits best with their resources
    • …
    corecore