9,846 research outputs found
Symbolic energy estimation model with optimum start algorithm implementation
The drive to reduce carbon emissions and energy utilisation, directly associated with dwellings and to achieve a zero carbon home, suggests that the assessment of energy ratings will have an increasingly prioritised role in the built environment. Created by the Building Research Establishment (BRE), the Standard Assessment Procedure (SAP) is the UK Government’s recommended method of assessing the energy ratings of dwellings. This paper describes a new, simplified dynamic method (hence known as IDEAS – Inverse Dynamics based Energy Analysis and Simulation) of assessing the controllability of a building and its servicing systems. The IDEAS method produces results that are comparable to SAP. An Optimum Start algorithm is explored in this paper to allow heating systems of different responsiveness and size to be integrated into the IDEAS framework. Results suggest that this design approach could enhance the SAP Methodology by the addition of advanced systems controllability and dynamic values
Booms, Busts and Ripples in British Regional Housing Markets
We present and discuss an annual econometric model of regional house prices in Britain estimated over the period 1972 to 2003. The model, which consists of a system of inverted housing demand equations, is data consistent, incorporates spatial lags and errors, has some spatial coefficient heterogeneity, has a plausible long run solution and includes a full range of explanatory variables. We use our results to explain the periods of boom and bust and the ripple effect from London house prices to house prices elsewhere. We also address the issue of whether there has been a bubble in the British housing marketHouse Prices; Ripple Effect; Bubble
Enhancement of the UK Standard Assessment Procedure (SAP) solar water heating prediction algorithm using parametric dynamical thermal simulations
SAP is the UK Government’s method for calculation of a dwelling’s energy efficiency and carbon dioxide emissions. This paper presents a method of informing the SAP procedure regarding evaluation of the advantage given to SAP ratings by installation of typical domestic Solar Domestic Hot Water (SDHW) systems. Comparable SDHW systems were simulated using the dynamic thermal simulation package TRNSYS and results were translated into empirical relations in a form that could be input into the SAP calculation procedure. Findings were compared against the current SAP algorithm and differences explained. Results suggest that calculation variances can exist between the SAP methodology and detailed dynamic thermal simulation methods. This is especially true for higher performance systems that can deviate greatly from default efficiency parameters. This might be due to SAP algorithms being historically based on older systems that have lower efficiencies. An enhancement to the existing SAP algorithm is suggested
Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems
When simulating molecular systems using deterministic equations of motion
(e.g., Newtonian dynamics), such equations are generally numerically integrated
according to a well-developed set of algorithms that share commonly agreed-upon
desirable properties. However, for stochastic equations of motion (e.g.,
Langevin dynamics), there is still broad disagreement over which integration
algorithms are most appropriate. While multiple desiderata have been proposed
throughout the literature, consensus on which criteria are important is absent,
and no published integration scheme satisfies all desiderata simultaneously.
Additional nontrivial complications stem from simulating systems driven out of
equilibrium using existing stochastic integration schemes in conjunction with
recently-developed nonequilibrium fluctuation theorems. Here, we examine a
family of discrete time integration schemes for Langevin dynamics, assessing
how each member satisfies a variety of desiderata that have been enumerated in
prior efforts to construct suitable Langevin integrators. We show that the
incorporation of a novel time step rescaling in the deterministic updates of
position and velocity can correct a number of dynamical defects in these
integrators. Finally, we identify a particular splitting that has essentially
universally appropriate properties for the simulation of Langevin dynamics for
molecular systems in equilibrium, nonequilibrium, and path sampling contexts.Comment: 15 pages, 2 figures, and 2 table
Simplified modelling of air source heat pumps producing detailed results
Created by the Building Research Establishment (BRE), the Standard Assessment Procedure (SAP) is the UK Government‟s recommended method of assessing the energy ratings of dwellings. Modelling future complex dwellings, and their servicing systems, will require a more advanced calculation which is as simple as SAP to use but can produce more detailed results. This paper extends a novel advanced dynamic calculation method (IDEAS – Inverse Dynamics based Energy Analysis and Simulation) of assessing the controllability of a building and its servicing systems. IDEAS produces SAP compliant results and allows confident (i.e. calibrated in SAP) predictions to be made regarding the impact of novel heating and renewable energy systems. This paper describes the addition of an Air Source Heat Pump (ASHP) model to IDEAS. This allows for detailed analysis to be made of ASHPs in a SAP compliant framework. The benefits of using the IDEAS method is highlighted with capabilities outwith the scope of SAP also possible. For example, IDEAS can be used as sizing tool for a heating system in a building
- …
