224 research outputs found

    Abelian and non-Abelian statistics in the coherent state representation

    Full text link
    We further develop an approach to identify the braiding statistics associated to a given fractional quantum Hall state through adiabatic transport of quasiparticles. This approach is based on the notion of adiabatic continuity between quantum Hall states on the torus and simple product states---or "patterns"---in the thin torus limit, together with a suitable coherent state Ansatz for localized quasiholes that respects the modular invariance of the torus. We give a refined and unified account of the application of this method to the Laughlin and Moore-Read states, which may serve as a pedagogical introduction to the nuts and bolts of this technique. Our main result is that the approach is also applicable---without further assumptions---to more complicated non-Abelian states. We demonstrate this in great detail for the level k=3k=3 Read-Rezayi state at filling factor ν=3/2\nu=3/2. These results may serve as an independent check of other techniques, where the statistics are inferred from conformal block monodromies. Our approach has the benefit of giving rise to intuitive pictures representing the transformation of topological sectors during braiding, and allows for a self-consistent derivation of non-Abelian statistics without heavy mathematical machinery.Comment: 38 pages, 11 figures, REVTeX 4-1; grammar and typo fixes, published versio

    Effective 1D Language for Fractional Quantum Hall States

    Get PDF
    In the theory of the fractional quantum Hall effect, much attention is paid to the correspondence between fractional quantum Hall wave functions and conformal blocks in certain rational conformal field theories (CFT). This correspondence is powerful, enabling the calculation of the fractional statistics of a state that would be difficult if not impossible to calculate directly from the wave functions. But it is, in general, conjectural, remaining without microscopic justification in many cases of interest, and involves heavy mathematical machinery. We detail an alternative method to calculate Abelian and non-Abelian fractional statistics, the coherent state method. The method relies on assumptions which are independent of those underlying the CFT correspondence, so it serves as an independent check of results for the statistics where they exist, and an alternative source of results when a CFT is not known. We show how the coherent state method can be used to derive the statistics of several increasingly complicated trial wave functions: ν=1/2 Laughlin, Moore-Read, and k=3 Read-Rezayi. We discuss implications of our method for a possible notion of braiding statistics of the Gaffnian state, a nonunitary quantum Hall state for which the ramifications of the CFT correspondence are less well understood. We go on to derive formulas for the counting of zero modes of all these states on the torus

    Undergraduate News: Inheritance Tax

    Get PDF

    Gaffnian holonomy through the coherent state method

    Full text link
    We analyze the effect of exchanging quasiholes described by Gaffnian quantum Hall trial state wave functions. This exchange is carried out via adiabatic transport using the recently developed coherent state Ansatz. We argue that our Ansatz is justified if the Gaffnian parent Hamiltonian has a charge gap, even though it is gapless to neutral excitations, and may therefore properly describe the adiabatic transport of Gaffnian quasiholes. For nonunitary states such as the Gaffnian, the result of adiabatic transport cannot agree with the monodromies of the conformal block wave functions, and may or may not lead to well-defined anyon statistics. Using the coherent state Ansatz, we find two unitary solutions for the statistics, one of which agrees with the statistics of the non-Abelian spin-singlet state by Ardonne and Schoutens.Comment: 11 pages, 4 figure

    The Next-Generation Multimission U.S. Surveillance Radar Network

    Get PDF
    The U.S. Government operates seven distinct radar networks, providing weather and aircraft surveillance for public weather services, air traffic control, and homeland defense. In this paper, we describe a next-generation multimission phased-array radar (MPAR) concept that could provide enhanced weather and aircraft surveillance services with potentially lower life cycle costs than multiple single-function radar networks. We describe current U.S. national weather and aircraft surveillance radar networks and show that by reducing overlapping airspace coverage, MPAR could reduce the total number of radars required by approximately one-third. A key finding is that weather surveillance requirements dictate the core parameters of a multimission radar—airspace coverage, aperture size, radiated power, and angular resolution. Aircraft surveillance capability can be added to a phased array weather radar at low incremental cost because the agile, electronically steered beam would allow the radar to achieve the much more rapid scan update rates needed for aircraft volume search missions, and additionally to support track modes for individual aircraft targets. We describe an MPAR system design that includes multiple transmit–receive channels and a highly digitized active phased array to generate independently steered beam clusters for weather, aircraft volume search, and aircraft track modes. For each of these modes, we discuss surveillance capability improvements that would be realized relative to today's radars. The Federal Aviation Administration (FAA) has initiated the development of an MPAR “preprototype” that will demonstrate critical subsystem technologies and multimission operational capabilities. Initial subsystem designs have provided a solid basis for estimating MPAR costs for comparison with existing, mechanically scanned operational surveillance radars.United States. Federal Aviation Administration (FA8721-05-C-0002

    ret/PTC-1 expression alters the immunoprofile of thyroid follicular cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hashimoto Thyroiditis (H.T.) is a destructive autoimmune thyroid condition whose precise molecular pathogenesis remains unclear. <it>ret</it>/PTC-1 is a chimeric transcript which has been described in autoimmune thyroid disease (AITD) and thyroid neoplasia. The purpose of this study was to observe the immunogenic effect exposure to H.T. and control lymphocyte supernatant would have on normal (Nthy-ori) and <it>ret</it>/PTC-1 (TPC-1) expressing thyroid cell line models.</p> <p>Results</p> <p>A 2 × 2 matrix comprising Nthy-ori and TPC-1 cell lines and H.T. and control lymphocyte supernatant was designed and utilised as follows; activated lymphocytic supernatant from a H.T. and normal control were co-cultured with a cell line derived from normal thyroid (Nthy-ori) and also a cell line derived from a papillary thyroid carcinoma that endogenously expresses <it>ret</it>/PTC-1 (TPC-1). The co-cultures were harvested at 0, 6 and 18 hour time points. Gene expression analysis was performed on RNA extracted from thyrocytes using TaqMan<sup>® </sup>Immune profiling Low-Density Arrays (Applied Biosystems, CA, USA) comprising gene expression markers for 93 immune related targets plus 3 endogenous controls.</p> <p>Stimulation of the normal thyroid cell line model with activated T cell supernatant from the H.T. donor yielded global up-regulation of immune targets when compared with control supernatant stimulation. In particular, a cohort of targets (granzyme B, CD3, CD25, CD152, CD45) associated with cytotoxic cell death; T cell receptor (TCR) and T cell signaling were up-regulated in the normal cell line model. When the <it>ret</it>/PTC-1 expressing thyroid cell line was co-cultured with H.T. lymphocyte supernatant, in comparison to control supernatant stimulation, down-regulation of the same subset of immune targets was seen.</p> <p>Conclusion</p> <p>Co-culturing H.T. lymphocyte supernatant with a normal thyroid cell line model leads to over-expression of a subset of targets which could contribute to the pathogenesis of H.T. via cytotoxic cell death and TCR signalling. Stimulation of the <it>ret</it>/PTC-1 positive cell line with the same stimulus led to a down-regulated shift in the gene expression pattern of the cohort of immune targets. We hypothesize that <it>ret</it>/PTC-1 activation may dampen immunogenic responses in the thyroid, which could possibly facilitate papillary thyroid carcinoma development.</p

    Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Archival formalin-fixed paraffin-embedded (FFPE) tissues have limited utility in applications involving analysis of gene expression due to mRNA degradation and modification during fixation and processing. This study analyzed 160 miRNAs in paired snap frozen and FFPE cells to investigate if miRNAs may be successfully detected in archival specimens.</p> <p>Results</p> <p>Our results show that miRNA extracted from FFPE blocks was successfully amplified using Q-RT-PCR. The levels of expression of miRNA detected in total RNA extracted from FFPE were higher than that extracted from snap frozen cells when the quantity of total RNA was identical. This phenomenon is most likely explained by the fact that larger numbers of FFPE cells were required to generate equivalent quantities of total RNA than their snap frozen counterparts.</p> <p>Conclusion</p> <p>We hypothesise that methylol cross-links between RNA and protein which occur during tissue processing inhibit the yield of total RNA. However, small RNA molecules appear to be less affected by this process and are recovered more easily in the extraction process. In general miRNAs demonstrated reliable expression levels in FFPE compared with snap frozen paired samples, suggesting these molecules might prove to be robust targets amenable to detection in archival material in the molecular pathology setting.</p

    Making alternative fuel vehicles work: Storage through absorption on Missouri corn cob

    Get PDF
    Abstract only availableThe USA's current demand for petroleum leads to many problems (many being global concerns as well): a dependence on foreign nations for our energy, an increase in pollution/global warming, and high gas prices. Each of those is the source of many more problems that will become worse if not addressed: Foreign dependence results in oil-effected politics and economic foreign dependence. Pollution and global warming result in an increase in the destruction of natural habitats due to changing climates, skin damage/cancer due to sun exposure, and natural disasters such as hurricanes and tornadoes that depend on higher temperatures. Along with gas prices increasing, so will the prices of goods and services as the cost of energy to produce them increases. My research with the Alliance for Collaborative Research in Alternative Fuel Technology addresses these issues by overcoming many of the hurdles that make current alternative fuels impractical. We have produced porous activated carbons that store high capacities of methane (natural gas) through physisorption for use in vehicle tanks. In optimizing storage capacity, we have studied production methods that vary the pore size distributions, surface areas, and densities of our carbons. We have found that the optimal pore size for methane is 1.1 nanometers and that it is best to maximize surface area and density. Our current best performers store 115-119 grams of methane per liter of carbon at ambient temperature and 34 bar, compared to the DOE target of 118 g/L. Our research is now expanding to include hydrogen storage.Alliance for Collaborative Research in Alternative Fuel Technolog

    Effect of BRAF(V600E )mutation on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model

    Get PDF
    BACKGROUND: microRNAs (miRNAs) are a group of non-coding single stranded RNAs measuring approximately 22 nucleotides in length that have been found to control cell growth, differentiation and apoptosis. They negatively regulate target genes and have recently been implicated in tumourigenesis. Furthermore, miRNA expression profiling correlates with various cancers, with these genes thought to act as both tumour suppressors and oncogenes. Recently, a point mutation in the BRAF gene leading to a V600E substitution has been identified as the most common genetic change in papillary thyroid carcinoma (PTC) occurring in 29–69% of cases. This mutation leads to aberrant MAPK activation that is implicated in tumourigenesis. AIM: The aim of this study was to identify the effect that BRAF oncogene has on post-transcriptional regulation in PTC by using microRNA analysis. RESULTS: A unique miRNA expression signature differentiated between PTC cell lines with BRAF mutations and a normal thyroid cell line. 15 miRNAs were found to be upregulated and 23 miRNAs were downregulated. Several of these up/down regulated miRNAs may be involved in PTC pathogenesis. miRNA profiling will assist in the elucidation of disease pathogenesis and identification biomarkers and targets

    Improved RNA quality and TaqMan® Pre-amplification method (PreAmp) to enhance expression analysis from formalin fixed paraffin embedded (FFPE) materials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Archival formalin-fixed paraffin-embedded (FFPE) tissues represent an abundant source of clinical specimens; however their use is limited in applications involving analysis of gene expression due to RNA degradation and modification during fixation and processing. This study improved the quality of RNA extracted from FFPE by introducing a heating step into the selected extraction protocols. Further, it evaluated a novel pre-amplification system (PreAmp) designed to enhance expression analysis from tissue samples using assays with a range of amplicon size (62–164 bp).</p> <p>Results</p> <p>Results from the Bioanalyzer and TaqMan<sup>® </sup>data showed improvement of RNA quality extracted using the modified protocols from FFPE. Incubation at 70°C for 20 minutes was determined to be the best condition of those tested to disrupt cross-links while not compromising RNA integrity. TaqMan<sup>® </sup>detection was influenced by master mix, amplicon size and the incorporation of a pre-amplification step. TaqMan<sup>® </sup>PreAmp consistently achieved decreased C<sub>T </sub>values in both snap frozen and FFPE aliquots compared with no pre-amplification.</p> <p>Conclusion</p> <p>Modification to extraction protocols has facilitated procurement of RNA that may be successfully amplified using QRT-PCR. TaqMan<sup>® </sup>PreAmp system is a robust and practical solution to limited quantities of RNA from FFPE extracts.</p
    corecore