174 research outputs found

    A general method for nested RT-PCR amplification and sequencing the complete HCV genotype 1 open reading frame

    Get PDF
    BACKGROUND: Hepatitis C virus (HCV) is a pathogenic hepatic flavivirus with a single stranded RNA genome. It has a high genetic variability and is classified into six major genotypes. Genotype 1a and 1b cause the majority of infections in the USA. Viral genomic sequence information is needed to correlate viral variation with pathology or response to therapy. However, reverse transcription-polymerase chain reaction (RT-PCR) of the HCV genome must overcome low template concentration and high target sequence diversity. Amplification conditions must hence have both high sensitivity and specificity yet recognize a heterogeneous target population to permit general amplification with minimal bias. This places divergent demands of the amplification conditions that can be very difficult to reconcile. RESULTS: RT and nested PCR conditions were optimized independently and systematically for amplifying the complete open reading frame (ORF) from HCV genotype 1a and 1b using several overlapping amplicons. For each amplicon, multiple pairs of nested PCR primers were optimized. Using these primers, the success rate (defined as the rate of production of sufficient DNA for sequencing with any one of the primer pairs for a given amplicon) for amplification of 72 genotype 1a and 1b patient plasma samples averaged over 95% for all amplicons. In addition, two sets of sequencing primers were optimized for each genotype 1a and 1b. Viral consensus sequences were determined by directly sequencing the amplicons. HCV ORFs from 72 patients have been sequenced using these primers. Sequencing errors were negligible because sequencing depth was over 4-fold and both strands were sequenced. Primer bias was controlled and monitored through careful primer design and control experiments. CONCLUSION: Optimized RT-PCR and sequencing conditions are useful for rapid and reliable amplification and sequencing of HCV genotype 1a and 1b ORFs

    Synthesis and evaluation of troponoids as a new class of antibiotics

    Get PDF
    Novel antibiotics are urgently needed. The troponoids [tropones, tropolones, and Ξ±-hydroxytropolones (Ξ±-HT)] can have anti-bacterial activity. We synthesized or purchased 92 troponoids and evaluated their antibacterial activities against Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa. Preliminary hits were assessed for minimum inhibitory concentrations (MIC80) and cytotoxicity (CC50) against human hepatoma cells. Sixteen troponoids inhibited S. aureus/E. coli/A. baumannii growth by β‰₯80% growth at 50 values >50 ΞΌM. Two selected tropolones (63 and 285) inhibited 18 methicillin-resistant S. aureus (MRSA) strains with similar MIC80 values as against a reference strain. Two selected thiotropolones (284 and 363) inhibited multidrug-resistant (MDR) E. coli with MIC80 ≀30 ΞΌM. One Ξ±-HT (261) inhibited MDR-A. baumannii with MIC80 ≀30 ΞΌM. This study opens new avenues for development of novel troponoid antibiotics to address the critical need to combat MDR bacterial infections

    Prospects for personalizing antiviral therapy for hepatitis C virus with pharmacogenetics

    Get PDF
    Chronic hepatitis C virus (HCV) infection is a major cause of liver disease worldwide. HCV infection is currently treated with IFNΞ± plus ribavirin for 24 to 48 weeks. This demanding therapy fails in up to 50% of patients, so the use of pharmacogenetic biomarkers to predict the outcome of treatment would reduce futile treatment of non-responders and help identify patients in whom therapy would be justified. Both IFNΞ± and ribavirin primarily act by modulating the immune system of the patient, and HCV uses multiple mechanisms to counteract the antiviral effects stimulated by therapy. Therefore, response to therapy is influenced by variations in human genes governing the immune system and by differences in HCV genes that blunt antiviral immune responses. This article summarizes recent advances in understanding how host and viral genetic variation affect outcome of therapy. The most notable human associations are polymorphisms within the IL28B gene, but variations in human leukocyte antigen and cytokine genes have also been associated with treatment outcome. The most prominent viral genetic association with outcome of therapy is that HCV genotype 1 is much less sensitive to treatment than genotypes 2 and 3, but genetic differences below the genotype level also influence outcome of therapy, presumably by modulating the ability of viral genes to blunt antiviral immune responses. Pharmacogenetic prediction of the outcome of IFN-based therapy for HCV will require integrating the efficacies of the immunosuppressive mechanisms of a viral isolate, and then interpreting the viral resistance potential in context of the genetic profile of the patient at loci associated with outcome of therapy. Direct-acting inhibitors of HCV that will be used in combination with IFNΞ± are nearing approval, so genetic prediction for anti-HCV therapy will soon need to incorporate viral genetic markers of viral resistance to the new drugs

    Mechanistic Characterization and Molecular Modeling of Hepatitis B Virus Polymerase Resistance to Entecavir

    Get PDF
    BACKGROUND: Entecavir (ETV) is a deoxyguanosine analog competitive inhibitor of hepatitis B virus (HBV) polymerase that exhibits delayed chain termination of HBV DNA. A high barrier to entecavir-resistance (ETVr) is observed clinically, likely due to its potency and a requirement for multiple resistance changes to overcome suppression. Changes in the HBV polymerase reverse-transcriptase (RT) domain involve lamivudine-resistance (LVDr) substitutions in the conserved YMDD motif (M204V/I +/- L180M), plus an additional ETV-specific change at residues T184, S202 or M250. These substitutions surround the putative dNTP binding site or primer grip regions of the HBV RT. METHODS/PRINCIPAL FINDINGS: To determine the mechanistic basis for ETVr, wildtype, lamivudine-resistant (M204V, L180M) and ETVr HBVs were studied using in vitro RT enzyme and cell culture assays, as well as molecular modeling. Resistance substitutions significantly reduced ETV incorporation and chain termination in HBV DNA and increased the ETV-TP inhibition constant (K(i)) for HBV RT. Resistant HBVs exhibited impaired replication in culture and reduced enzyme activity (k(cat)) in vitro. Molecular modeling of the HBV RT suggested that ETVr residue T184 was adjacent to and stabilized S202 within the LVDr YMDD loop. ETVr arose through steric changes at T184 or S202 or by disruption of hydrogen-bonding between the two, both of which repositioned the loop and reduced the ETV-triphosphate (ETV-TP) binding pocket. In contrast to T184 and S202 changes, ETVr at primer grip residue M250 was observed during RNA-directed DNA synthesis only. Experimentally, M250 changes also impacted the dNTP-binding site. Modeling suggested a novel mechanism for M250 resistance, whereby repositioning of the primer-template component of the dNTP-binding site shifted the ETV-TP binding pocket. No structural data are available to confirm the HBV RT modeling, however, results were consistent with phenotypic analysis of comprehensive substitutions of each ETVr position. CONCLUSIONS: Altogether, ETVr occurred through exclusion of ETV-TP from the dNTP-binding site, through different, novel mechanisms that involved lamivudine-resistance, ETV-specific substitutions, and the primer-template

    Baseline Prediction of Combination Therapy Outcome in Hepatitis C Virus 1b Infected Patients by Discriminant Analysis Using Viral and Host Factors

    Get PDF
    Current treatment of chronic hepatitis C virus (HCV) infection has limited efficacy -especially among genotype 1 infected patients-, is costly, and involves severe side effects. Thus, predicting non-response is of major interest for both patient wellbeing and health care expense. At present, treatment cannot be individualized on the basis of any baseline predictor of response. We aimed to identify pre-treatment clinical and virological parameters associated with treatment failure, as well as to assess whether therapy outcome could be predicted at baseline.Forty-three HCV subtype 1b (HCV-1b) chronically infected patients treated with pegylated-interferon alpha plus ribavirin were retrospectively studied (21 responders and 22 non-responders). Host (gender, age, weight, transaminase levels, fibrosis stage, and source of infection) and viral-related factors (viral load, and genetic variability in the E1-E2 and Core regions) were assessed. Logistic regression and discriminant analyses were used to develop predictive models. A "leave-one-out" cross-validation method was used to assess the reliability of the discriminant models.Lower alanine transaminase levels (ALT, p=0.009), a higher number of quasispecies variants in the E1-E2 region (number of haplotypes, nHap_E1-E2) (p=0.003), and the absence of both amino acid arginine at position 70 and leucine at position 91 in the Core region (p=0.039) were significantly associated with treatment failure. Therapy outcome was most accurately predicted by discriminant analysis (90.5% sensitivity and 95.5% specificity, 85.7% sensitivity and 81.8% specificity after cross-validation); the most significant variables included in the predictive model were the Core amino acid pattern, the nHap_E1-E2, and gamma-glutamyl transferase and ALT levels.Discriminant analysis has been shown as a useful tool to predict treatment outcome using baseline HCV genetic variability and host characteristics. The discriminant models obtained in this study led to accurate predictions in our population of Spanish HCV-1b treatment naΓ―ve patients

    JC Virus Mediates Invasion and Migration in Colorectal Metastasis

    Get PDF
    INTRODUCTION:JC Virus (JCV), a human polyomavirus, is frequently present in colorectal cancers (CRCs). JCV large T-Ag (T-Ag) expressed in approximately half of all CRC's, however, its functional role in CRC is poorly understood. We hypothesized that JCV T-Ag may mediate metastasis in CRC cells through increased migration and invasion. MATERIAL AND METHODS:CRC cell lines (HCT116 and SW837) were stably transfected with JCV early transcript sequences cloned into pCR3 or empty vectors. Migration and invasion assays were performed using Boyden chambers. Global gene expression analysis was performed to identify genetic targets and pathways altered by T-Ag expression. Microarray results were validated by qRT-PCR, protein expression analyses and immunohistochemistry. Matching primary CRCs and liver metastases from 33 patients were analyzed for T-Ag expression by immunohistochemistry. RESULTS:T-Ag expressing cell lines showed 2 to 3-fold increase in migration and invasion compared to controls. JCV T-Ag expression resulted in differential expression of several genetic targets, including genes that mediate cell migration and invasion. Pathway analysis suggested a significant involvement of these genes with AKT and MAPK signaling. Treatment with selective PI3K/AKT and MAPK pathway inhibitors resulted in reduced migration and invasion. In support of our in-vitro results, immunohistochemical staining of the advanced stage tumors revealed frequent JCV T-Ag expression in metastatic primary tumors (92%) as well as in their matching liver metastasis (73%). CONCLUSION:These data suggest that JCV T-Ag expression in CRC associates with a metastatic phenotype, which may partly be mediated through the AKT/MAPK signaling pathway. Frequent expression of JCV T-Ag in CRC liver metastasis provides further clues supporting a mechanistic role for JCV as a possible mediator of cellular motility and invasion in CRC

    Multiple effects of silymarin on the hepatitis C virus lifecycle

    Get PDF
    Silymarin, an extract from milk thistle (Silybum marianum), and its purified flavonolignans have been recently shown to inhibit hepatitis C virus (HCV) infection, both in vitro and in vivo. In the current study, we further characterized silymarin's antiviral actions. Silymarin had antiviral effects against hepatitis C virus cell culture (HCVcc) infection that included inhibition of virus entry, RNA and protein expression, and infectious virus production. Silymarin did not block HCVcc binding to cells but inhibited the entry of several viral pseudoparticles (pp), and fusion of HCVpp with liposomes. Silymarin but not silibinin inhibited genotype 2a NS5B RNA-dependent RNA polymerase (RdRp) activity at concentrations 5 to 10 times higher than required for anti-HCVcc effects. Furthermore, silymarin had inefficient activity on the genotype 1b BK and four 1b RDRPs derived from HCV-infected patients. Moreover, silymarin did not inhibit HCV replication in five independent genotype 1a, 1b, and 2a replicon cell lines that did not produce infectious virus. Silymarin inhibited microsomal triglyceride transfer protein activity, apolipoprotein B secretion, and infectious virion production into culture supernatants. Silymarin also blocked cell-to-cell spread of virus. CONCLUSION: Although inhibition of in vitro NS5B polymerase activity is demonstrable, the mechanisms of silymarin's antiviral action appear to include blocking of virus entry and transmission, possibly by targeting the host cell

    Experimental Infection of Rabbits with Rabbit and Genotypes 1 and 4 Hepatitis E Viruses

    Get PDF
    Background: A recent study provided evidence that farmed rabbits in China harbor a novel hepatitis E virus (HEV) genotype. Although the rabbit HEV isolate had 77-79% nucleotide identity to the mammalian HEV genotypes 1 to 4, their genomic organization is very similar. Since rabbits are used widely experimentally, including as models of infection, we investigated whether they constitute an appropriate animal model for human HEV infection.Methods: Forty-two SPF rabbits were divided randomly into eleven groups and inoculated with six different isolates of rabbit HEV, two different doses of a second-passage rabbit HEV, and with genotype 1 and 4 HEV. Sera and feces were collected weekly after inoculation. HEV antigen, RNA, antibody and alanine aminotransferase in sera and HEV RNA in feces were detected. The liver samples were collected during necropsy subject to histopathological examination.Findings: Rabbits inoculated with rabbit HEV became infected with HEV, with viremia, fecal virus shedding and high serum levels of viral antigens, and developed hepatitis, with elevation of the liver enzyme, ALT. The severity of disease corresponded to the infectious dose (genome equivalents), with the most severe hepatic disease caused by strain GDC54-18. However, only two of nine rabbits infected with HEV genotype 4, and none infected with genotype 1, developed hepatitis although six of nine rabbits inoculated with the genotype 1 HEV and in all rabbits inoculated with the genotype 4 HEV seroconverted to be positive for anti-HEV IgG antibody by 14 weeks post-inoculation.Conclusions: These data indicate that rabbits are an appropriate model for rabbit HEV infection but are not likely to be useful for the study of human HEV. The rabbit HEV infection of rabbits may provide an appropriate parallel animal model to study HEV pathogenesis

    Contribution of Genome-Wide HCV Genetic Differences to Outcome of Interferon-Based Therapy in Caucasian American and African American Patients

    Get PDF
    Background: Hepatitis C virus (HCV) has six major genotypes, and patients infected with genotype 1 respond less well to interferon-based therapy than other genotypes. African American patients respond to interferon Ξ±-based therapy at about half the rate of Caucasian Americans. The effect of HCV's genetic variation on treatment outcome in both racial groups is poorly understood. Methodology:We determined the near full-length pre-therapy consensus sequences from 94 patients infected with HCV genotype 1a or 1b undergoing treatment with peginterferon Ξ±-2a and ribavirin through the Virahep-C study. The sequences were stratified by genotype, race and treatment outcome to identify HCV genetic differences associated with treatment efficacy. Principal Findings:HCV sequences from patients who achieved sustained viral response were more diverse than sequences from non-responders. These inter-patient diversity differences were found primarily in the NS5A gene in genotype 1a and in core and NS2 in genotype 1b. These differences could not be explained by host selection pressures. Genotype 1b but not 1a African American patients had viral genetic differences that correlated with treatment outcome. Conclusions & Significance: Higher inter-patient viral genetic diversity correlated with successful treatment, implying that there are HCV genotype 1 strains with intrinsic differences in sensitivity to therapy. Core, NS3 and NS5A have interferonsuppressive activities detectable through in vitro assays, and hence these activities also appear to function in human patients. Both preferential infection with relatively resistant HCV variants and host-specific factors appear to contribute to the unusually poor response to therapy in African American patients. Β© 2010 Donlin et al

    Immune evasion versus recovery after acute hepatitis C virus infection from a shared source

    Get PDF
    Acute infection with hepatitis C virus (HCV) rarely is identified, and hence, the determinants of spontaneous resolution versus chronicity remain incompletely understood. In particular, because of the retrospective nature and unknown source of infection in most human studies, direct evidence for emergence of escape mutations in immunodominant major histocompatibility complex class I–restricted epitopes leading to immune evasion is extremely limited. In two patients infected accidentally with an identical HCV strain but who developed divergent outcomes, the total lack of HCV-specific CD4+ T cells in conjunction with vigorous CD8+ T cells that targeted a single epitope in one patient was associated with mutational escape and viral persistence. Statistical evidence for positive Darwinian selective pressure against an immunodominant epitope is presented. Wild-type cytotoxic T lymphocytes persisted even after the cognate antigen was no longer present
    • …
    corecore