414 research outputs found

    Underwater radiated noise levels of a research icebreaker in the central Arctic Ocean

    Get PDF
    U.S. Coast Guard Cutter Healy\u27s underwater radiated noise signature was characterized in the central Arctic Ocean during different types of ice-breaking operations. Propulsion modes included transit in variable ice cover, breaking heavy ice with backing-and-ramming maneuvers, and dynamic positioning with the bow thruster in operation. Compared to open-water transit, Healy\u27s noise signature increased approximately 10 dB between 20 Hz and 2 kHz when breaking ice. The highest noise levels resulted while the ship was engaged in backing-and-ramming maneuvers, owing to cavitation when operating the propellers astern or in opposing directions. In frequency bands centered near 10, 50, and 100 Hz, source levels reached 190–200 dB re: 1 μPa at 1 m (full octave band) during ice-breaking operations

    Magnetic Fields and Infall Motions in NGC 1333 IRAS 4

    Get PDF
    We present single-dish 350 micron dust continuum polarimetry as well as HCN and HCO+ J=4-3 rotational emission spectra obtained on NGC 1333 IRAS 4. The polarimetry indicates a uniform field morphology over a 20" radius from the peak continuum flux of IRAS 4A, in agreement with models of magnetically supported cloud collapse. The field morphology around IRAS 4B appears to be quite distinct however, with indications of depolarization observed towards the peak flux of this source. Inverse P-Cygni profiles are observed in the HCN J=4-3 line spectra towards IRAS 4A, providing a clear indication of infall gas motions. Taken together, the evidence gathered here appears to support the scenario that IRAS 4A is a cloud core in a critical state of support against gravitational collapse.Comment: 23 pages, 6 figures, 2 table

    Dispersion of Magnetic Fields in Molecular Clouds. III

    Get PDF
    We apply our technique on the dispersion of magnetic fields in molecular clouds to high spatial resolution Submillimeter Array polarization data obtained for Orion KL in OMC-1, IRAS 16293, and NGC 1333 IRAS 4A. We show how one can take advantage of such high resolution data to characterize the magnetized turbulence power spectrum in the inertial and dissipation ranges. For Orion KL we determine that in the inertial range the spectrum can be approximately fitted with a power law k^-(2.9\pm0.9) and we report a value of 9.9 mpc for {\lambda}_AD, the high spatial frequency cutoff presumably due to turbulent ambipolar diffusion. For the same parameters we have \sim k^-(1.4\pm0.4) and a tentative value of {\lambda}_AD \simeq 2.2 mpc for NGC 1333 IRAS 4A, and \sim k^-(1.8\pm0.3) with an upper limit of {\lambda}_AD < 1.8 mpc for IRAS 16293. We also discuss the application of the technique to interferometry measurements and the effects of the inherent spatial filtering process on the interpretation of the results.Comment: 25 pages, 9 figures; accepted for publication in The Astrophysical Journa

    Dispersion of Magnetic Fields in Molecular Clouds. II.

    Get PDF
    We expand our study on the dispersion of polarization angles in molecular clouds. We show how the effect of signal integration through the thickness of the cloud as well as across the area subtended by the telescope beam inherent to dust continuum measurements can be incorporated in our analysis to correctly account for its effect on the measured angular dispersion and inferred turbulent to large-scale magnetic field strength ratio. We further show how to evaluate the turbulent magnetic field correlation scale from polarization data of sufficient spatial resolution and high enough spatial sampling rate. We apply our results to the molecular cloud OMC-1, where we find a turbulent correlation length of δ ≈ 16 mpc, a turbulent to large-scale magnetic field strength ratio of approximately 0.5, and a plane-of-the-sky large-scale magnetic field strength of approximately 760 μG

    Spiking Patterns and Their Functional Implications in the Antennal Lobe of the Tobacco Hornworm \u3cem\u3eManduca sexta\u3c/em\u3e

    Get PDF
    Bursting as well as tonic firing patterns have been described in various sensory systems. In the olfactory system, spontaneous bursts have been observed in neurons distributed across several synaptic levels, from the periphery, to the olfactory bulb (OB) and to the olfactory cortex. Several in vitro studies indicate that spontaneous firing patterns may be viewed as “fingerprints” of different types of neurons that exhibit distinct functions in the OB. It is still not known, however, if and how neuronal burstiness is correlated with the coding of natural olfactory stimuli. We thus conducted an in vivo study to probe this question in the OB equivalent structure of insects, the antennal lobe (AL) of the tobacco hornworm Manduca sexta. We found that in the moth\u27s AL, both projection (output) neurons (PNs) and local interneurons (LNs) are spontaneously active, but PNs tend to produce spike bursts while LNs fire more regularly. In addition, we found that the burstiness of PNs is correlated with the strength of their responses to odor stimulation – the more bursting the stronger their responses to odors. Moreover, the burstiness of PNs was also positively correlated with the spontaneous firing rate of these neurons, and pharmacological reduction of bursting resulted in a decrease of the neurons\u27 responsiveness. These results suggest that neuronal burstiness reflects a physiological state of these neurons that is directly linked to their response characteristics

    Spatio-temporal patterns of beaked whale echolocation signals in the North Pacific.

    Get PDF
    At least ten species of beaked whales inhabit the North Pacific, but little is known about their abundance, ecology, and behavior, as they are elusive and difficult to distinguish visually at sea. Six of these species produce known species-specific frequency modulated (FM) echolocation pulses: Baird's, Blainville's, Cuvier's, Deraniyagala's, Longman's, and Stejneger's beaked whales. Additionally, one described FM pulse (BWC) from Cross Seamount, Hawai'i, and three unknown FM pulse types (BW40, BW43, BW70) have been identified from almost 11 cumulative years of autonomous recordings at 24 sites throughout the North Pacific. Most sites had a dominant FM pulse type with other types being either absent or limited. There was not a strong seasonal influence on the occurrence of these signals at any site, but longer time series may reveal smaller, consistent fluctuations. Only the species producing BWC signals, detected throughout the Pacific Islands region, consistently showed a diel cycle with nocturnal foraging. By comparing stranding and sighting information with acoustic findings, we hypothesize that BWC signals are produced by ginkgo-toothed beaked whales. BW43 signal encounters were restricted to Southern California and may be produced by Perrin's beaked whale, known only from Californian waters. BW70 signals were detected in the southern Gulf of California, which is prime habitat for Pygmy beaked whales. Hubb's beaked whale may have produced the BW40 signals encountered off central and southern California; however, these signals were also recorded off Pearl and Hermes Reef and Wake Atoll, which are well south of their known range

    Dispersion of Magnetic Fields in Molecular Clouds. IV - Analysis of Interferometry Data

    Get PDF
    We expand on the dispersion analysis of polarimetry maps toward applications to interferometry data. We show how the filtering of low spatial frequencies can be accounted for within the idealized Gaussian turbulence model, initially introduced for single-dish data analysis, to recover reliable estimates for correlation lengths of magnetized turbulence, as well as magnetic field strengths (plane-of-the-sky component) using the Davis–Chandrasekhar–Fermi method. We apply our updated technique to TADPOL/CARMA data obtained on W3(OH), W3 Main, and DR21(OH). For W3(OH), our analysis yields a turbulence correlation length δ ≃ 19 mpc, a ratio of turbulent-to-total magnetic energy 〈B〉_^2_t/〈B^2〉 ≃ 0.58, and a magnetic field strength B_0 ~ 1.1 mG for W3 Main δ ≃ 22mpc, 〈B_t^2〉/〈B^2〉 ≃ 0.74, and B_0 ~ 0.7 mG while for DR21(OH) δ ≃ 12 mpc, 〈B_t^2〉/〈B^2〉 ≃ 0.70, and B_0 ~ 1.2 mG

    On the Measurement of the Magnitude and Orientation of the Magnetic Field in Molecular Clouds

    Full text link
    We demonstrate that the combination of Zeeman, polarimetry and ion-to-neutral molecular line width ratio measurements permits the determination of the magnitude and orientation of the magnetic field in the weakly ionized parts of molecular clouds. Zeeman measurements provide the strength of the magnetic field along the line of sight, polarimetry measurements give the field orientation in the plane of the sky and the ion-to-neutral molecular line width ratio determines the angle between the magnetic field and the line of sight. We apply the technique to the M17 star-forming region using a HERTZ 350 um polarimetry map and HCO+-to-HCN molecular line width ratios to provide the first three-dimensional view of the magnetic field in M17.Comment: 37 pages, 12 figures, 3 table
    corecore