2,391 research outputs found

    Cross Section For Excitation Of The Fourth Positive Band System In Carbon Monoxide By 20-120 KeV Protons

    Get PDF
    Excitation cross sections for the fourth positive band system in carbon monoxide have been determined from studies of the energy-loss spectra of 20-120-keV protons incident on gaseous CO targets. The energy-loss spectra had an energy resolution of about 2 eV. Prominent peaks in the spectra were observed at 8.5 and 13.8 eV. The first peak is believed to be due to excitation of the fourth positive band system of CO (X+1A 1, while the 13.8-eV peak covers a number of possible states, including the B+2 and the C+1 states. Changes in the slope of the ionization continuum were noted at 16.5 eV, corresponding to the A i2 state of CO+, and at 20.5 eV, corresponding to the B+2 state of CO+. Absolute excitation cross sections for the fourth positive band system of CO are presented, as well as the total inelastic cross sections and the total ionization cross sections for 20-120-keV protons incident on CO. © 1970 The American Physical Society

    Collisional Excitation Of N+ At 50 KeV

    Get PDF
    The excitation spectrum of N+ has been observed by examining the energy lost by a 50- keV N+ beam passing through a He target. The spectrum exhibits dramatic features with large cross sections. Determination of the approximate ratio of metastable to ground-state ions in the primary ion beam has permitted measurement of excitation cross sections from both ground-state and metastable N+ ions colliding with He target atoms. © 1972 The American Physical Society

    Inositol Diphosphate Signaling Regulates Telomere Length

    Get PDF
    Activation of phospholipase C-dependent inositol polyphosphate signaling pathways generates distinct messengers derived from inositol 1,4,5-trisphosphate that control gene expression and mRNA export. Here we report the regulation of telomere length by production of a diphosphorylinositol tetrakisphosphate, PP-IP4, synthesized by the KCS1 gene product. Loss of PP-IP4 production results in lengthening of telomeres, whereas overproduction leads to their shortening. This effect requires the presence of Tel1, the yeast homologue of ATM, the protein mutated in the human disease ataxia telangiectasia. Our data provide in vivo evidence of a regulatory link between inositol polyphosphate signaling and the checkpoint kinase family and describe a third nuclear process modulated by phospholipase C activation

    Three dimensional numerical relativity: the evolution of black holes

    Full text link
    We report on a new 3D numerical code designed to solve the Einstein equations for general vacuum spacetimes. This code is based on the standard 3+1 approach using cartesian coordinates. We discuss the numerical techniques used in developing this code, and its performance on massively parallel and vector supercomputers. As a test case, we present evolutions for the first 3D black hole spacetimes. We identify a number of difficulties in evolving 3D black holes and suggest approaches to overcome them. We show how special treatment of the conformal factor can lead to more accurate evolution, and discuss techniques we developed to handle black hole spacetimes in the absence of symmetries. Many different slicing conditions are tested, including geodesic, maximal, and various algebraic conditions on the lapse. With current resolutions, limited by computer memory sizes, we show that with certain lapse conditions we can evolve the black hole to about t=50Mt=50M, where MM is the black hole mass. Comparisons are made with results obtained by evolving spherical initial black hole data sets with a 1D spherically symmetric code. We also demonstrate that an ``apparent horizon locking shift'' can be used to prevent the development of large gradients in the metric functions that result from singularity avoiding time slicings. We compute the mass of the apparent horizon in these spacetimes, and find that in many cases it can be conserved to within about 5\% throughout the evolution with our techniques and current resolution.Comment: 35 pages, LaTeX with RevTeX 3.0 macros. 27 postscript figures taking 7 MB of space, uuencoded and gz-compressed into a 2MB uufile. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ and mpeg simulations at http://jean-luc.ncsa.uiuc.edu/Movies/ Submitted to Physical Review

    Solvent inhibition in the liquid-phase catalytic oxidation of 1,4-butanediol: understanding the catalyst behaviour from NMR relaxation time measurements

    Get PDF
    Catalytic reaction studies and Nuclear Magnetic Resonance (NMR) relaxation time measurements have been compared to study the influence of competitive adsorption of reactant and solvent on catalytic conversion. The reaction chosen is the aerobic catalytic oxidation of 1,4-butanediol in methanol over different supported-metal catalysts. From the NMR T1/T2 ratio, where T1 is the longitudinal and T2 the transverse spin relaxation time, the relative affinity of reactant and solvent for different catalytic surfaces is determined. The catalysts with the lowest activity show a preferential surface affinity for the solvent compared to the reactant. Conversely, the catalyst with the highest activity shows a preferential surface affinity for the reactant compared to the solvent. Significantly, Ru/SiO2, which is totally inactive for the oxidation of 1,4-butanediol, exhibited a lower T1/T2 ratio (surface affinity) for 1,4-butanediol (reactant) than for a “weakly-interacting” alkane, indicating a very poor surface affinity for the diol functionality. The results provide direct evidence of the importance of the adsorbate-adsorbent interactions on catalyst activity in liquid-phase oxidations and indicate that the competitive adsorption of the solvent plays an important role in these reactions. This work demonstrates that NMR relaxation time analysis is a powerful method for comparing adsorption of liquids in porous catalysts, providing valuable information on the affinity of different chemical species for a catalyst surface. Moreover, the results demonstrate that NMR relaxation time measurements can be used not only to guide selection of solvent for use with a specific catalyst, but also selection of the catalyst itself. The results suggest that this method may be used to predict catalyst behaviour, enabling improved design and optimisation of heterogeneous catalytic processes

    Asymptotic gluing of asymptotically hyperbolic solutions to the Einstein constraint equations

    Full text link
    We show that asymptotically hyperbolic solutions of the Einstein constraint equations with constant mean curvature can be glued in such a way that their asymptotic regions are connected.Comment: 37 pages; 2 figure

    Policy Feedback and the Politics of the Affordable Care Act

    Get PDF
    There is a large body of literature devoted to how “policies create politics” and how feedback effects from existing policy legacies shape potential reforms in a particular area. Although much of this literature focuses on self‐reinforcing feedback effects that increase support for existing policies over time, Kent Weaver and his colleagues have recently drawn our attention to self‐undermining effects that can gradually weaken support for such policies. The following contribution explores both self‐reinforcing and self‐undermining policy feedback in relationship to the Affordable Care Act, the most important health‐care reform enacted in the United States since the mid‐1960s. More specifically, the paper draws on the concept of policy feedback to reflect on the political fate of the ACA since its adoption in 2010. We argue that, due in part to its sheer complexity and fragmentation, the ACA generates both self‐reinforcing and self‐undermining feedback effects that, depending of the aspect of the legislation at hand, can either facilitate or impede conservative retrenchment and restructuring. Simultaneously, through a discussion of partisan effects that shape Republican behavior in Congress, we acknowledge the limits of policy feedback in the explanation of policy stability and change

    The Time-Domain Spectroscopic Survey: Understanding the Optically Variable Sky with SEQUELS in SDSS-III

    Get PDF
    The Time-Domain Spectroscopic Survey (TDSS) is an SDSS-IV eBOSS subproject primarily aimed at obtaining identification spectra of ~220,000 optically-variable objects systematically selected from SDSS/Pan-STARRS1 multi-epoch imaging. We present a preview of the science enabled by TDSS, based on TDSS spectra taken over ~320 deg^2 of sky as part of the SEQUELS survey in SDSS-III, which is in part a pilot survey for eBOSS in SDSS-IV. Using the 15,746 TDSS-selected single-epoch spectra of photometrically variable objects in SEQUELS, we determine the demographics of our variability-selected sample, and investigate the unique spectral characteristics inherent in samples selected by variability. We show that variability-based selection of quasars complements color-based selection by selecting additional redder quasars, and mitigates redshift biases to produce a smooth quasar redshift distribution over a wide range of redshifts. The resulting quasar sample contains systematically higher fractions of blazars and broad absorption line quasars than from color-selected samples. Similarly, we show that M-dwarfs in the TDSS-selected stellar sample have systematically higher chromospheric active fractions than the underlying M-dwarf population, based on their H-alpha emission. TDSS also contains a large number of RR Lyrae and eclipsing binary stars with main-sequence colors, including a few composite-spectrum binaries. Finally, our visual inspection of TDSS spectra uncovers a significant number of peculiar spectra, and we highlight a few cases of these interesting objects. With a factor of ~15 more spectra, the main TDSS survey in SDSS-IV will leverage the lessons learned from these early results for a variety of time-domain science applications.Comment: 17 pages, 14 figures, submitted to Ap
    • 

    corecore