270 research outputs found

    Aglite: A 3-Wavelength Lidar System for Quantitative Assessment of Agricultural Air Quality and Whole Facility Emissions

    Get PDF
    Ground based remote sensing technologies such as scanning lidar systems (light detection and ranging) are increasingly being used to characterize ambient aerosols due to key advantages (i.e., wide area of regard (10 km2), fast response time (s-1), high spatial resolution (\u3c10 \u3em) and high sensitivity). Scanning lidar allows for 3D imaging of atmospheric motion and aerosol variability, which can be used to quantitatively evaluate particulate matter (PM) concentrations and emissions. Space Dynamics Laboratory, in conjunction with USDA ARS, has developed and successfully deployed a lidar system called Aglite to characterize PM in diverse settings. Aglite is a portable scanning elastic lidar system with three wavelengths (355, 532, and 1064 nm), 6 m long range bins, and an effective range from 0.5 to 15 km. Filter-based PM samplers, optical particle counters, and various meteorological instruments were deployed to provide environmental and PM conditions for use in the lidar retrieval method. The developed retrieval algorithm extracts aerosol optical parameters, which were constrained by the point measurements, and converts return signals to PM concentrations. Once calibrated, the Aglite system can map the spatial distribution and temporal variation of the PM concentrations. Whole facility or operation-based emission rates were calculated from the lidar PM data with a mass balance approach. Concentration comparisons with upwind and downwind point sensors were made to verify data quality; lidar-derived PM levels were usually in good agreement with point sensor measurements. Comparisons of lidar-based emissions with emissions estimated through other methods using point sensor data generally show good agreement

    Effects of alternation in some quasi‐one‐dimensional magnetic materials

    Get PDF
    Exchange coupling in Cu(II) and Mn(III) compounds with unusual structures is discussed. {[Cu(bipyrimidine)(OH)(H2O)] (ClO4)}n has an alternatingly bridged structure with alternating ferromagnetic (+167.6 cm−1 through the hydroxo bridge) and antiferromagnetic (−79.8 cm−1 through the bipyrimidine bridge) interactions. Copper(II) phthalate monohydrate has alternating next‐nearest‐neighbor exchange with J=−12.3 cm−1 and α=0.06. This is the first member of this class. The compound K2[Mn(III) (salicylate)2][Mn(III) (salicylate)2]{CH3OH]2 has manganese ions in two environments alternating along the chain. A modified model for the chain is presented, and exchange coupling is found to be small since magnetic orbitals are not linked by the bridging ligand.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70701/2/JAPIAU-69-8-6013-1.pd

    Emissions Calculated from Particulate Matter and Gaseous Ammonia Measurements from Commercial Dairy in California, USA

    Get PDF
    Emission rates and factors for particulate matter (PM) and gaseous ammonia (NH3) were estimated from measurements taken at a dairy in June 2008. Concentration measurements were made using both point and remote sensors. Filter-based PM samplers and optical particle counters (OPCs) characterized aerodynamic and optical properties, while a scanning elastic lidar measured particles around the facility. The lidar was calibrated to PM concentration using the point measurements. NH3 concentrations were measured using 23 passive samplers and 2 open-path Fourier transform infrared spectrometers (FTS). Emission rates and factors were estimated through both an inverse modeling technique using AERMOD coupled with measurements and a mass-balance approach applied to lidar PM data. Mean PM emission factors ± 95% confidence interval were 3.8 ± 3.2, 24.8 ± 14.5, and 75.9 ± 33.2 g/d/AU for PM2.5, PM10, and TSP, respectively, from inverse modeling and 1.3 ± 0.2, 15.1 ± 2.2, and 46.4 ± 7.0 g/d/AU for PM2.5, PM10, and TSP, respectively, from lidar data. Average daily NH3 emissions from the pens, liquid manure ponds, and the whole facility were 143.4 ± 162.0, 29.0 ± 74.7, and 172.4 ± 121.4 g/d/AU, respectively, based on the passive sampler data and 190.6 ± 55.8, 16.4 ± 8.4, and 207.1 ± 54.7 g/d/AU, respectively, based on FTS measurements. Liquid manure pond emissions averaged 5.4 ± 13.9 and 3.1 ± 1.6 g/m2/d based on passive sampler and FTS measurements, respectively. The calculated PM10 and NH3 emissions were of similar magnitude as those found in literature. Diurnal emission patterns were observed

    The use of routine outcome measures in two child and adolescent mental health services: a completed audit cycle

    Get PDF
    Background: Routine outcome measurement (ROM) is important for assessing the clinical effectiveness of health services and for monitoring patient outcomes. Within Child and Adolescent Mental Health Services (CAMHS) in the UK the adoption of ROM in CAMHS has been supported by both national and local initiatives (such as government strategies, local commissioning policy, and research). Methods: With the aim of assessing how these policies and initiatives may have influenced the uptake of ROM within two different CAMHS we report the findings of two case-note audits: a baseline audit conducted in January 2011 and a re-audit conducted two years later in December 2012-February 2013. Results: The findings show an increase in both the single and repeated use of outcome measures from the time of the original audit, with repeated use (baseline and follow-up) of the Health of the Nation Outcome Scale for Children and Adolescents (HoNOSCA) scale increasing from 10% to 50% of cases. Re-audited case-notes contained more combined use of different outcome measures, with greater consensus on which measures to use. Outcome measures that were applicable across a wide range of clinical conditions were more likely to be used than symptom-specific measures, and measures that were completed by the clinician were found more often than measures completed by the service user. Conclusions: The findings show a substantial improvement in the use of outcome measures within CAMHS. These increases in use were found across different service organisations which were subject to different types of local service priorities and drivers

    Particulate-Matter Emission Estimates from Agricultural Spring-Tillage Operations Using LIDAR and Inverse Modeling

    Get PDF
    Particulate-matter (PM) emissions from a typical spring agricultural tillage sequence and a strip–till conservation tillage sequence in California’s San Joaquin Valley were estimated to calculate the emissions control efficiency (η) of the strip–till conservation management practice (CMP). Filter-based PM samplers, PM-calibrated optical particle counters (OPCs), and a PM-calibrated light detection and ranging (LIDAR) system were used to monitored upwind and downwind PM concentrations during May and June 2008. Emission rates were estimated through inverse modeling coupled with the filter and OPC measurements and through applying a mass balance to the PM concentrations derived from LIDAR data. Sampling irregularities and errors prevented the estimation of emissions from 42% of the sample periods based on filter samples. OPC and LIDAR datasets were sufficiently complete to estimate emissions and the strip–till CMP η, which were ∌90% for all size fractions in both datasets. Tillage time was also reduced by 84%. Calculated emissions for some operations were within the range of values found in published studies, while other estimates were significantly higher than literature values. The results demonstrate that both PM emissions and tillage time may be reduced by an order of magnitude through the use of a strip–till conservation tillage CMP when compared to spring tillage activities

    A Novel Transgenic Rat Model of Robust Cerebral Microvascular Amyloid with Prominent Vasculopathy

    Get PDF
    Accumulation of fibrillar amyloid ÎČ protein in blood vessels of the brain, a condition known as cerebral amyloid angiopathy (CAA), is a common pathology of elderly individuals, a prominent comorbidity of Alzheimer disease, and a driver of vascular cognitive impairment and dementia. Although several transgenic mouse strains have been generated that develop varying levels of CAA, consistent models of associated cerebral microhemorrhage and vasculopathy observed clinically have been lacking. Reliable preclinical animal models of CAA and microhemorrhage are needed to investigate the molecular pathogenesis of this condition. Herein, we describe the generation and characterization of a novel transgenic rat (rTg-DI) that produces low levels of human familial CAA Dutch/Iowa E22Q/D23N mutant amyloid ÎČ protein in brain and faithfully recapitulates many of the pathologic aspects of human small-vessel CAA. rTg-DI rats exhibit early-onset and progressive accumulation of cerebral microvascular fibrillar amyloid accompanied by early-onset and sustained behavioral deficits. Comparable to CAA in humans, the cerebral microvascular amyloid in rTg-DI rats causes capillary structural alterations, promotes prominent perivascular neuroinflammation, and produces consistent, robust microhemorrhages and small-vessel occlusions that are readily detected by magnetic resonance imaging. The rTg-DI rats provide a new model to investigate the pathogenesis of small-vessel CAA and microhemorrhages, to develop effective biomarkers for this condition and to test therapeutic interventions

    Tower and Aircraft Eddy Covariance Measurements of Water Vapor, Energy, and Carbon Dioxide Fluxes during SMACEX

    Get PDF
    Abstract A network of eddy covariance (EC) and micrometeorological flux (METFLUX) stations over corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] canopies was established as part of the Soil Moisture–Atmosphere Coupling Experiment (SMACEX) in central Iowa during the summer of 2002 to measure fluxes of heat, water vapor, and carbon dioxide (CO2) during the growing season. Additionally, EC measurements of water vapor and CO2 fluxes from an aircraft platform complemented the tower-based measurements. Sensible heat, water vapor, and CO2 fluxes showed the greatest spatial and temporal variability during the early crop growth stage. Differences in all of the energy balance components were detectable between corn and soybean as well as within similar crops throughout the study period. Tower network–averaged fluxes of sensible heat, water vapor, and CO2 were observed to be in good agreement with area-averaged aircraft flux measurements

    Lidar Based Emissions Measurement at the Whole Facility Scale: Method and Error Analysis

    Get PDF
    Particulate emissions from agricultural sources vary from dust created by operations and animal movement to the fine secondary particulates generated from ammonia and other emitted gases. The development of reliable facility emission data using point sampling methods designed to characterize regional, well-mixed aerosols are challenged by changing wind directions, disrupted flow fields caused by structures, varied surface temperatures, and the episodic nature of the sources found at these facilities. We describe a three-wavelength lidar-based method, which, when added to a standard point sampler array, provides unambiguous measurement and characterization of the particulate emissions from agricultural production operations in near real time. Point-sampled data are used to provide the aerosol characterization needed for the particle concentration and size fraction calibration, while the lidar provides 3D mapping of particulate concentrations entering, around, and leaving the facility. Differences between downwind and upwind measurements provide an integrated aerosol concentration profile, which, when multiplied by the wind speed profile, produces the facility source flux. This approach assumes only conservation of mass, eliminating reliance on boundary layer theory. We describe the method, examine measurement error, and demonstrate the approach using data collected over a range of agricultural operations, including a swine grow-finish operation, an almond harvest, and a cotton gin emission study

    Ground-state fidelity of Luttinger liquids: A wave functional approach

    Full text link
    We use a wave functional approach to calculate the fidelity of ground states in the Luttinger liquid universality class of one-dimensional gapless quantum many-body systems. The ground-state wave functionals are discussed using both the Schrodinger (functional differential equation) formulation and a path integral formulation. The fidelity between Luttinger liquids with Luttinger parameters K and K' is found to decay exponentially with system size, and to obey the symmetry F(K,K')=F(1/K,1/K') as a consequence of a duality in the bosonization description of Luttinger liquids.Comment: 13 pages, IOP single-column format. Sec. 3 expanded with discussion of short-distance cut-off. Some typos corrected. Ref. 44 in v2 is now footnote 2 (moved by copy editor). Published versio
    • 

    corecore