354 research outputs found

    Validation of a fully autonomous phosphate analyser based on a microfluidic lab-on-a-chip

    Get PDF
    This work describes the design of a phosphate analyser that utilises a microfluidic lab-on-a-chip. The analyser contains all the required chemical storage, pumping and electronic components to carry out a complete phosphate assay. The system is self-calibrating and self-cleaning, thus capable of long-term operation. This was proven by a bench top calibration of the analyser using standard solutions and also by comparing the analyser's performance to a commercially available phosphate monitor installed at a waste water treatment plant. The output of the microfluidic lab-on-a-chip analyser was shown to have sensitivity and linear range equivalent to the commercially available monitor and also the ability to operate over an extended period of time

    Deep Convolutional LSTM for improved flash flood prediction

    Get PDF
    Flooding remains one of the most devastating and costly natural disasters. As flooding events grow in frequency and intensity, it has become increasingly important to improve flood monitoring, prediction, and early warning systems. Recent efforts to improve flash flood forecasts using deep learning have shown promise, yet commonly-used techniques such as long short term memory (LSTM) models are unable to extract potentially significant spatial relationships among input datasets. Here we propose a hybrid approach using a Convolutional LSTM (ConvLSTM) network to predict stream stage heights using multi-modal hydrometeorological remote sensing and in-situ inputs. Results suggest the hybrid network can more effectively capture the specific spatiotemporal landscape dynamics of a flash flood-prone catchment relative to the current state-of-the-art, leading to a roughly 26% improvement in model error when predicting elevated stream conditions. Furthermore, the methodology shows promise for improving prediction accuracy and warning times for supporting local decision making

    Caffeine Consumption Contributes to Skin Intrinsic Fluorescence in Type 1 Diabetes.

    Get PDF
    Background: A variant (rs1495741) in the gene for the N-acetyltransferase 2 (NAT2) protein is associated with skin intrinsic fluorescence (SIF), a noninvasive measure of advanced glycation end products and other fluorophores in the skin. Because NAT2 is involved in caffeine metabolism, we aimed to determine whether caffeine consumption is associated with SIF and whether rs1495741 is associated with SIF independently of caffeine. Materials and Methods: SIF was measured in 1,181 participants with type 1 diabetes from the Epidemiology of Diabetes Interventions and Complications study. Two measures of SIF were used: SIF1, using a 375-nm excitation light-emitting diode (LED), and SIF14 (456-nm LED). Food frequency questionnaires were used to estimate mean caffeine intake. To establish replication, we examined a second type 1 diabetes cohort. Results: Higher caffeine intake was significantly associated with higher SIF1LED 375 nm[0.6, 0.2] (P=2×10−32) and SIF14LED 456 nm[0.4, 0.8] (P=7×10−31) and accounted for 4% of the variance in each after adjusting for covariates. When analyzed together, caffeine intake and rs1495741 both remained highly significantly associated with SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8]. Mean caffeinated coffee intake was also positively associated with SIF1LED 375 nm[0.6, 0.2] (P=9×10−12) and SIF14LED 456 nm[0.4, 0.8] (P=4×10−12), but no association was observed for decaffeinated coffee intake. Finally, caffeine was also positively associated with SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8] (P\u3c0.0001) in the replication cohort. Conclusions: Caffeine contributes to SIF. The effect of rs1495741 on SIF appears to be partially independent of caffeine consumption. Because SIF and coffee intake are each associated with cardiovascular disease, our findings suggest that accounting for coffee and/or caffeine intake may improve risk prediction models for SIF and cardiovascular disease in individuals with diabetes

    Haptoglobin Genotype and the Rate of Renal Function Decline in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study

    Get PDF
    Many patients with type 1 diabetes develop renal disease despite moderately good metabolic control, suggesting other risk factors may play a role. Recent evidence suggests that the haptoglobin (HP) 2-2 genotype, which codes for a protein with reduced antioxidant activity, may predict renal function decline in type 1 diabetes. We examined this hypothesis in 1,303 Caucasian participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. HP genotype was determined by polyacrylamide gel electrophoresis. Glomerular filtration rate was estimated by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation and albumin excretion based on timed urine samples. Participants were followed up for a mean of 22 years. HP genotype was significantly associated with the development of sustained estimated glomerular filtration rate (GFR) \u3c60 mL/min/1.73 m2and with end-stage renal disease (ESRD), with HP 2-2 having greater risk than HP 2-1 and 1-1. No association was seen with albuminuria. Although there was no treatment group interaction, the associations were only significant in the conventional treatment group, where events rates were much higher. We conclude that the HP genotype is significantly associated with the development of reduced GFR and ESRD in the DCCT/EDIC study

    Albuminuria Changes and Cardiovascular and Renal Outcomes in Type 1 Diabetes: The DCCT/EDIC Study.

    Get PDF
    Background and objectives In trials of people with type 2 diabetes, albuminuria reduction with renin-angiotensin system inhibitors is associated with lower risks of cardiovascular events and CKD progression. We tested whether progression or remission of microalbuminuria is associated with cardiovascular and renal risk in a well characterized cohort of type 1 diabetes. Design, setting, participants, & measurements We studied 1441 participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study. Albumin excretion rate (AER) was quantified annually or biennially for up to 30 years. For each participant, albuminuria status was defined over time as normoalbuminuria (AER continuously \u3c30 mg/d), sustained microalbuminuria (AER, 30–299 mg/d on two consecutive visits), macroalbuminuria (AER≥300 mg/d), or remitted microalbuminuria (transition from sustained microalbuminuria to AER\u3c30 mg/d on two consecutive visits). We tested associations of time-updated albuminuria status with adjudicated clinical cardiovascular events, the development of reduced GFR (\u3c60 ml/min per 1.73 m2 on two consecutive visits), and subclinical cardiovascular disease. Results At least one cardiovascular event occurred in 184 participants, and 98 participants developed reduced eGFR. Compared with normoalbuminuria, sustained microalbuminuria, remitted microalbuminuria, and macroalbuminuria were each associated with higher risk of cardiovascular events (adjusted hazard ratios [HRs] and 95% confidence intervals [95% CIs]: 1.79 [1.13 to 2.85], 2.62 [1.68 to 4.07], and 2.65 [1.68 to 4.19], respectively) and reduced eGFR (adjusted HRs [95% CIs], 5.26 [2.43 to 11.41], 4.36 [1.80 to 10.57], and 54.35 [30.79 to 95.94], respectively). Compared with sustained microalbuminuria, remission to normoalbuminuria was not associated with reduced risk of cardiovascular events (adjusted HR, 1.33; 95% CI, 0.68 to 2.59) or reduced eGFR (adjusted HR, 1.75; 95% CI, 0.56 to 5.49). Compared with normoalbuminuria, sustained microalbuminuria, remitted microalbuminuria, and macroalbuminuria were associated with greater carotid intima-media thickness, and macroalbuminuria was associated with a greater degree of coronary artery calcification. Conclusions In type 1 diabetes, microalbuminuria and macroalbuminuria are associated with higher risks of cardiovascular disease and reduced eGFR, but achieving a remission of established microalbuminuria to normoalbuminuria does not appear to improve outcomes

    Autonomous reagent-based microfluidic pH sensor platform

    Get PDF
    A portable sensor has been developed for in situ measurements of pH within aqueous environments. The sensor design incorporates microfluidic technology, allowing for the use of low volume of samples and reagents, and an integrated low cost detection system that uses a light emitting diode as light source and a photodiode as the detector. Different combination of dyes has been studied in order to allow for a broader pH detection range, than can be obtained using a single dye. The optimum pH range for this particular dye combination was found to be between pH 4 and pH 9. The reagents developed for pH measurement were first tested using bench-top instrumentation and once optimised, the selected formulation was then implemented in the microfluidic system. The prototype system has been characterised in terms of pH response, linear range, reproducibility and stability. Results obtained using the prototype system are in good agreement with those obtained using reference instrumentation, i.e. a glass electrode/pH meter and analysis via spectrophotometer based assays. The reagent (mixture #3) is shown to be stable for over 8 months, which is important for long term deployments. A high reproducibility is reported with a global RSD of ≤1.8% across measurements of 90 samples, i.e. with respect to concentrations reported by a calibrated pH meter. A series of real water samples from multiple sources were also analysed using the portable sensor system, of which the global error found was 3.84% showing its feasibility for real-world applications

    Outcomes of Radiofrequency Ablation as First-Line Therapy for Hepatocellular Carcinoma less than 3 cm in Potentially Transplantable Patients

    Get PDF
    © 2019 European Association for the Study of the Liver Background & Aims: Radiofrequency ablation (RFA) is an effective treatment for single hepatocellular carcinoma (HCC) ≤3 cm. Disease recurrence is common, and in some patients will occur outside transplant criteria. We aimed to assess the incidence and risk factors for recurrence beyond Milan criteria in potentially transplantable patients treated with RFA as first-line therapy. Methods: We performed a retrospective cohort study of potentially transplantable patients with new diagnoses of unifocal HCC ≤3 cm that underwent RFA as first-line therapy between 2000-2015. We defined potentially transplantable patients as those aged 2 cm). Competing risks Cox regression was used to identify predictors of recurrence beyond Milan criteria. Results: We included 301 patients (167 HCC ≤2 cm and 134 HCC >2 cm). Recurrence beyond Milan criteria occurred in 36 (21.6%) and 47 (35.1%) patients in the HCC ≤2 cm and the HCC >2 cm groups, respectively (p = 0.01). The 1-, 3- and 5-year actuarial survival rates after RFA were 98.2%, 86.2% and 79.0% in the HCC ≤2 cm group vs. 93.3%, 77.6% and 70.9% in the HCC >2 cm group (p = 0.01). Tumor size >2 cm (hazard ratio 1.94; 95% CI 1.25–3.02) and alpha-fetoprotein levels at the time of ablation (100–1,000 ng/ml: hazard ratio 2.05; 95% CI 1.10–3.83) were found to be predictors of post-RFA recurrence outside Milan criteria. Conclusion: RFA for single HCC ≤3 cm provides excellent short- to medium-term survival. However, we identified patients at higher risk of recurrence beyond Milan criteria. For these patients, liver transplantation should be considered immediately after the first HCC recurrence following RFA. Lay summary: Radiofrequency ablation and liver transplantation are treatment options for early stages of hepatocellular carcinoma (HCC). After ablation some patients will experience recurrence or metastatic spread of the initial tumor or may develop new tumors within the liver. Despite close follow-up, these recurrences can progress rapidly and exceed transplant criteria, preventing the patient from receiving a transplant. We identified that patients with HCC >2 cm and higher serum alpha-fetoprotein are at greater risk of recurrence beyond the transplant criteria. These data suggest that liver transplantation should be considered immediately after the first HCC recurrence for these patients

    The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    Get PDF
    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (>50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of α520=0.07±0.06\alpha_{\rm 5-20} = -0.07 \pm 0.06, α20148=0.39±0.04\alpha_{\rm 20-148} = -0.39 \pm0.04, and α5148=0.20±0.03\alpha_{\rm 5-148} = -0.20 \pm 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C^{\rm Sync} = (2.8 \pm 0.3) \times 10^{-6} \micro\kelvin^2.Comment: Accepted to Ap
    corecore