
Himmelfarb Health Sciences Library, The George Washington University
Health Sciences Research Commons

GW Biostatistics Center George Washington University Biostatistics Center

7-20-2015

Caffeine Consumption Contributes to Skin
Intrinsic Fluorescence in Type 1 Diabetes.
Karen M Eny

Trevor J Orchard

Rachel Grace Miller

John Maynard

Denis M Grant

See next page for additional authors

Follow this and additional works at: https://hsrc.himmelfarb.gwu.edu/biostatscenter_facpubs

Part of the Biostatistics Commons, Endocrinology, Diabetes, and Metabolism Commons, and
the Epidemiology Commons

This Journal Article is brought to you for free and open access by the George Washington University Biostatistics Center at Health Sciences Research
Commons. It has been accepted for inclusion in GW Biostatistics Center by an authorized administrator of Health Sciences Research Commons. For
more information, please contact hsrc@gwu.edu.

Recommended Citation
Eny, K. M., Orchard, T. J., Miller, R. G., Maynard, J., Grant, D. M., Costacou, T., ... & Paterson, A. D. (2015). Caffeine Consumption
Contributes to Skin Intrinsic Fluorescence in Type 1 Diabetes. Diabetes Technology & Therapeutics.

https://hsrc.himmelfarb.gwu.edu?utm_source=hsrc.himmelfarb.gwu.edu%2Fbiostatscenter_facpubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/biostatscenter_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fbiostatscenter_facpubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/biostatscenter?utm_source=hsrc.himmelfarb.gwu.edu%2Fbiostatscenter_facpubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://hsrc.himmelfarb.gwu.edu/biostatscenter_facpubs?utm_source=hsrc.himmelfarb.gwu.edu%2Fbiostatscenter_facpubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=hsrc.himmelfarb.gwu.edu%2Fbiostatscenter_facpubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/686?utm_source=hsrc.himmelfarb.gwu.edu%2Fbiostatscenter_facpubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/740?utm_source=hsrc.himmelfarb.gwu.edu%2Fbiostatscenter_facpubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hsrc@gwu.edu


Authors
Karen M Eny, Trevor J Orchard, Rachel Grace Miller, John Maynard, Denis M Grant, Tina Costacou, Patricia
A. Cleary, Barbara H Braffett, Andrew D Paterson, and DCCT/EDIC Research Group

This journal article is available at Health Sciences Research Commons: https://hsrc.himmelfarb.gwu.edu/biostatscenter_facpubs/112

https://hsrc.himmelfarb.gwu.edu/biostatscenter_facpubs/112?utm_source=hsrc.himmelfarb.gwu.edu%2Fbiostatscenter_facpubs%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages


ORIGINAL ARTICLE

Caffeine Consumption Contributes to Skin Intrinsic
Fluorescence in Type 1 Diabetes

Karen M. Eny, PhD,1 Trevor J. Orchard, MD,2 Rachel Grace Miller, MS,2 John Maynard, MSEE,3

Denis M. Grant, PhD,4 Tina Costacou, PhD,2 Patricia A. Cleary, MS,5 Barbara H. Braffett, PhD,5

the DCCT/EDIC Research Group,* and Andrew D. Paterson, MD1,6

Abstract

Background: A variant (rs1495741) in the gene for the N-acetyltransferase 2 (NAT2) protein is associated with
skin intrinsic fluorescence (SIF), a noninvasive measure of advanced glycation end products and other fluor-
ophores in the skin. Because NAT2 is involved in caffeine metabolism, we aimed to determine whether caffeine
consumption is associated with SIF and whether rs1495741 is associated with SIF independently of caffeine.
Materials and Methods: SIF was measured in 1,181 participants with type 1 diabetes from the Epidemiology of
Diabetes Interventions and Complications study. Two measures of SIF were used: SIF1, using a 375-nm
excitation light-emitting diode (LED), and SIF14 (456-nm LED). Food frequency questionnaires were used to
estimate mean caffeine intake. To establish replication, we examined a second type 1 diabetes cohort.
Results: Higher caffeine intake was significantly associated with higher SIF1LED 375 nm[0.6, 0.2] (P = 2 · 10-32)
and SIF14LED 456 nm[0.4, 0.8] (P = 7 · 10-31) and accounted for 4% of the variance in each after adjusting for
covariates. When analyzed together, caffeine intake and rs1495741 both remained highly significantly asso-
ciated with SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8]. Mean caffeinated coffee intake was also positively
associated with SIF1LED 375 nm[0.6, 0.2] (P = 9 · 10-12) and SIF14LED 456 nm[0.4, 0.8] (P = 4 · 10-12), but no asso-
ciation was observed for decaffeinated coffee intake. Finally, caffeine was also positively associated with
SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8] (P < 0.0001) in the replication cohort.
Conclusions: Caffeine contributes to SIF. The effect of rs1495741 on SIF appears to be partially independent of
caffeine consumption. Because SIF and coffee intake are each associated with cardiovascular disease, our
findings suggest that accounting for coffee and/or caffeine intake may improve risk prediction models for SIF
and cardiovascular disease in individuals with diabetes.

Introduction

Measurement of skin intrinsic fluorescence (SIF)
represents a novel noninvasive biomarker of ad-

vanced glycation end products (AGEs) and other fluor-

ophores in the skin.1,2 Skin fluorescence has been shown to
be positively associated with subclinical atherosclerosis
and/or cardiovascular disease mortality in the general pop-
ulation,3 in type 1 and type 2 diabetes,4–6 and in people with
renal failure.7
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4Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.
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Several factors contribute to interindividual variability in skin
fluorescence, including age, glycated hemoglobin (HbA1c),
smoking and nephropathy.7,8 Recently, rs1495741 in the gene
for the N-acetyltransferase 2 (NAT2) protein, which tags ar-
ylamine N-acetyltransferase enzyme activity status,9 was iden-
tified as a major locus influencing skin fluorescence across
four cohorts consisting of subjects with and without diabetes,
explaining up to 15% of the variance.10 NAT2 is a phase II drug-
metabolizing enzyme that metabolizes aromatic amine and hy-
drazine drugs, heterocyclic amines,11 and caffeine following
initial detoxification by CYP1A2.12 NAT2 has been previously
associated with serum 1-methylxanthine:4-acetamidobutanoate
(P = 1.7 · 10-40) in a genome-wide association study
(GWAS).13 This metabolite ratio likely reflects the role of
NAT2 in the metabolism of caffeine because caffeine is
metabolized to 1-methylxanthine, which is used to deter-
mine the NAT2 acetylator status.12 Because caffeine ex-
hibits fluorescent properties14 and NAT2 metabolizes
caffeine metabolites, it is plausible that the NAT2 associ-
ation with SIF is due to fluorescence of caffeine in the
skin. We therefore tested whether caffeine consumption is
associated with SIF and whether the association of
rs1495741 with SIF is independent of caffeine intake. We
separately used two cohorts of subjects with type 1 dia-
betes to determine the reproducibility of our observations.

Materials and Methods

Subjects

Subjects included 1,441 patients with type 1 diabetes
between 13 and 39 years of age at baseline, who were re-
cruited from 1983 to 1989 to participate in the Diabetes
Control and Complications Trial (DCCT).15 Participants
were randomized to intensive (n = 711) or conventional
(n = 730) therapy and were followed up for a mean of 6.5
years until the study ended in 1993. In 1994, 1,375 subjects
(96% of the surviving cohort) were enrolled in the annual
observational follow-up study, Epidemiology of Diabetes
Interventions and Complications (EDIC).16 In EDIC year 16
or 17, subjects were invited to participate in the SCOUT
substudy to measure SIF, and 92% (n = 1,185) of the active
EDIC subjects participated.8

Measurement of SIF

The SCOUT DS� SF spectrometer (VeraLight, Inc., Al-
buquerque, NM) was used to measure skin tone (pigmenta-
tion) and SIF from the underside of the left forearm. SIF is a
measure of skin fluorescence that mathematically corrects for
factors such as skin pigmentation, which may affect light
absorption and scattering.4,8,17 For all of our analyses we used
SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8], which were
examined previously in genetic association studies of SIF in
DCCT/EDIC10 and represent the lowest (SIF1 = 375 nm) and
highest (SIF14 = 456 nm) light-emitting diode (LED) excita-
tion wavelengths examined in the DCCT/EDIC study. Fur-
thermore, SIF1LED 375 nm[0.6, 0.2] as measured by the SCOUT
DS SF spectrometer is similar to the excitation level (ap-
proximately 350–370 nm) commonly used by the AGE
Reader (DiagnOptics, Groningen, The Netherlands), another
device that measures skin fluorescence.3,6,7 This level of
excitation captures fluorescence of AGEs and has been pre-

viously shown to have the strongest association with type 1
diabetes complications in the Pittsburgh Epidemiology of
Diabetes Complications (EDC) study.1,2,5,18

SIF1LED 375 nm[0.6, 0.2] was detected over an emission
range of 435–655 nm and corrected for light scattering with
the reflectance adjusted by the dimensionless excitation
and emission exponents, kx = 0.6 and km = 0.2, respectively.
SIF14LED 456 nm[0.4, 0.8] was detected over an emission range
of 491–655 nm, with reflectance adjusted by kx = 0.4 and
km = 0.8 emission exponents. The first of two SIF measure-
ments, reported in arbitrary units, was used for analyses.

Measurement of caffeine intake

During the DCCT (1983–1993), diet was assessed using a
modified Burke-type diet history19 at the baseline, 2-year, 5-
year, and study end points. Participants were asked by die-
titians to describe the meals and snacks they usually had to eat
or drink on weekdays and on weekends. Seasonal variations
in food intake and foods eaten away from home were also
recorded. A staff of trained coders at the Central Nutrition
Coding Unit (University of Minnesota, St. Paul, MN) coded
the diet histories in a standardized manner, and nutrient in-
takes were calculated using version 13 (1986) of the Nutrition
Coordinating Center nutrient database. The intercoder reli-
ability and the reproducibility of the diet history were as-
sessed at Year 2 of the DCCT.19

During EDIC years 1–12 (1994–2006), a 126-item self-
administered Harvard food frequency questionnaire (FFQ)
was used to assess diet intake biennially.20 Participants were
asked how often they consumed a specified serving size of
each food item over the past year. The nine response cate-
gories ranged from never or less than once per month to six or
more times daily. Nutrient intakes from the FFQ were then
calculated to reflect daily intake using the corresponding food
item and respective portion size primarily from the U.S.
Department of Agriculture nutrient database. Frequency re-
sponse items were available for caffeinated beverages (cof-
fee, tea, cola, and low-calorie cola) and decaffeinated coffee
during EDIC Years 13–15. The validity of the Harvard FFQ
was assessed previously in a subset of participants from the
Nurses’ Health Study by comparing the FFQ with 1-week
diet records measured approximately every 3 months during
the preceding year. Correlation coefficients for coffee and tea
consumption were 0.75 and 0.90, respectively.21

Genotyping

The rs1495741 (NAT2) genotype was available from the
Illumina (San Diego, CA) human 1M beadchip assay, which
was used for genome-wide genotyping in the DCCT/EDIC.10

After exclusion of subjects determined to be admixed using
population genetic approaches, 1,081 subjects had both
rs1495741 genotype data and SIF measurements available.10

Statistical analysis

Caffeine intake measured using the FFQ during the EDIC
study was used as our primary measure of caffeine exposure.
Over 60% of subjects had four or five measures of caffeine
intake from FFQs completed during the EDIC study (range,
one to seven), and approximately 50% had three measures of
caffeine intake from diet histories completed during the
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DCCT (range, one to six). Mean caffeine intake was calcu-
lated separately for each subject during the DCCT and the
EDIC study. To approximate a normal distribution, mean
caffeine intake was square root transformed when used as the
outcome variable (Supplementary Figs S1 and S2; Supple-
mentary Data are available online at www.liebertonline.com/
dia), whereas SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8]

were loge transformed.10

rs1495741 was modeled assuming an additive model. Linear
regression was used to examine the relationship of rs1495741
with SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8] in
both unadjusted (M1) and adjusted (M2) models. M2 in-
cluded age, sex, skin tone, EDIC clinic latitude, smoking
status, any estimated glomerular filtration rate <60 mL/min/
1.73 m2, DCCT eligibility HbA1c, mean DCCT HbA1c, and
mean EDIC HbA1c8 (Supplementary Table S1). The same
models were also used to examine the association of mean
caffeine intake during the EDIC study and/or the DCCT
alone or in combination with SIF. To exclude the possibility
of confounding due to total reported daily caloric intake, it
was included as a covariate in secondary models after ex-
cluding under- and over-reporters, defined as consuming
<800 kcal/day and >6,000 kcal/day, respectively. We also
additionally adjusted M2 for DCCT treatment group and
separately for DCCT prevention cohorts in secondary ana-
lyses. To examine whether a nonlinear relationship exists
between caffeine intake and SIF, caffeine2 was added to M1
and M2. Linear regression was used to test whether
rs1495741 was associated with caffeine intake. To determine
whether the association of rs1495741 with SIF differed by
smoking status, we tested for interaction between rs1495741
and smoking status (never smokers vs. ever and current
smokers).

Unadjusted Spearman correlation, and multiple linear
regression, adjusting for M2 covariates, were used to de-
termine the association of mean consumption of each of the
caffeinated beverages and decaffeinated coffee frequency
with SIF. A value of P < 0.05 was used to establish statistical
significance.

Replication study

Subjects comprised 210 participants (48% male) from the
Pittsburgh EDC study of childhood-onset diabetes22 who had
caffeine intake and SIF measured. Diet was assessed at the
baseline (1986–1988), 2-year, and 10-year exams using the
same Harvard FFQ used in the EDIC study. Mean caffeine
intake was calculated for each person and used for analyses.

SIF was initially measured in a pilot group of participants
living within 25 miles of the study clinic in 2007–2009
(n = 107) and subsequently in a substudy of participants un-
dergoing brain imaging in 2010 (n = 65) and at the 25-year
examination in 2011 (n = 38). By June 30, 2013, a total of 210
subjects had SIF measured and were included in the SIF–
caffeine analyses. For participants with two SIF measure-
ments available, only the first measurement was used for
analyses. On average, SIF was assessed 17.9 – 3.0 (SD) years
(range, 8.7–26.5 years) after diet was assessed, using a sim-
ilar protocol as in the DCCT/EDIC study.5

DNA was collected during the 2-year exam, and
rs1495741 was genotyped using fluorescence polarization
with a 5¢-ctatcttccagaaagtaaatgtg-3¢ forward primer, 5¢-tggga

aactatcatttaaaacag-3¢ reverse primer, and 5-gaagctactgtgaat
gccca-3¢ fluorescence polarization reverse primer and de-
tected on 2% agarose gel. Polymerase chain reaction condi-
tions were 95�C for 5 min, 35 cycles of (95�C for 30 s, 56�C
for 30 s, and 72�C for 30 s), and finally 72�C for 5 min and
10�C hold. For fluorescence polarization an annealing tem-
perature of 60�C using the C/T dye mix was used.

Multiple linear regression adjusting for age, sex, smoking,
and estimated glomerular filtration rate <60 mL/min/1.73 m2

was used to test for association between rs1495741 with SIF.
Spearman correlations were used to examine the relationship
for mean caffeine intake with SIF. Multiple linear regression
was used to test the joint effects of rs1495741 and mean
caffeine intake on SIF including age, sex, smoking, and es-
timated glomerular filtration rate <60 mL/min/1.73 m2 as
additional covariates.

Results

Table 1 shows subject characteristics of the DCCT/EDIC
participants, separately by the former DCCT treatment group.
On average, daily caffeine intake during the EDIC study
(Supplementary Fig. S1) was 74 mg/day lower than during
the DCCT (Supplementary Fig. S2), but caffeine intake was
correlated across DCCT and EDIC time periods (r = 0.74,
P < 0.0001).

Mean caffeine intake during the EDIC study was positively
associated with SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8]

in unadjusted analyses and accounted for approximately
11% of the variance in each, respectively (Table 2 and
Supplementary Fig. S3).

After adjusting for covariates, caffeine was still significantly
associated with SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8],
but the effect was attenuated, and the variance accounted for
by caffeine intake during the EDIC study was 3.8% for
SIF1LED 375 nm[0.6, 0.2] and 4.2% for SIF14LED 456 nm[0.4, 0.8]

(Table 2).
Because age, smoking status, and mean EDIC HbA1c were

all positively associated with both SIF1LED 375 nm[0.6, 0.2]

(Supplementary Table S1) and mean EDIC caffeine intake
(Supplementary Table S2), we examined whether the atten-
uation of the caffeine effect on SIF in M2 (Table 2) was
explained by adjusting for these variables. Adjusting for age
and smoking status largely accounted for the attenuation of the
caffeine effect on SIF1LED 375 nm[0.6, 0.2] (b – SE, 0.00031 –
0.000025; P = 1.9 · 10-33, without adjustments for age and
smoking status). Similarly, the attenuation of the caffeine ef-
fect on SIF14LED 456 nm[0.4, 0.8] was due to adjustments for age
and smoking status as well as EDIC HbA1c (b – SE, 0.00035 –
0.00003; P = 1.6 · 10-30, without adjustments for age, smok-
ing status, and HbA1c).

Additionally adjusting M2 for mean total caloric intake did
not materially alter the association of mean EDIC caffeine
intake with either SIF1LED 375 nm[0.6, 0.2] (P = 4.1 · 10-17) or
SIF14LED 456 nm[0.4, 0.8] (P = 3.9 · 10-16). Similarly, adjusting
for DCCT treatment group or DCCT primary versus sec-
ondary prevention cohort did not materially alter the results
(data not shown).

We also tested whether the association of caffeine intake
with SIF is nonlinear and observed some evidence supporting
a quadratic relationship for SIF1LED 375 nm[0.6, 0.2] (blinear –
SE, 0.0002 – 0.00003 [P = 5.8 · 10-16]; bquadratic – SE, - 1.8 ·
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Table 1. Characteristics of the Diabetes Control and Complications Trial (DCCT)/Epidemiology

of Diabetes Interventions and Complications Participants with Skin Instrinsic Fluorescence (SIF)

Measures, Separately by Former DCCT Randomized Treatment Group at the Time SIF Was Measured

Former INT (n = 612) Former CON (n = 573)

Demographic characteristics
Male sex 317 (52%) 308 (54%)
Age (years) 52 – 7 51 – 7
Diabetes duration (years) 30.0 – 4.9 29.5 – 4.9
Primary cohort assignmenta 298 (49%) 294 (51%)
Skin tone (arbitrary units) 260 – 47 256 – 49
Clinic latitude (>37�N)b 444 (73%) 427 (75%)
Smoking statusc

Never 372 (61%) 352 (61%)
Former 154 (25%) 149 (26%)
Current 86 (14%) 72 (13%)

Any eGFR <60 mL/min/1.73 m2 to date (yes)d 40 (7%) 44 (8%)

Glycemic exposure
DCCT eligibility HbA1c (%) (mmol/mol) 9.1 – 1.6 (76 – 17) 8.9 – 1.6 (74 – 17)
DCCT mean HbA1c (%) (mmol/mol) 7.2 – 0.8 (55 – 9) 9.0 – 1.3 (75 – 14)
EDIC mean HbA1c (%) (mmol/mol) 8.0 – 1.1 (63 – 12) 8.0 – 1.0 (63 – 11)
Time-weighted mean HbA1c (%) (mmol/mol)e 8.0 – 0.9 (64 – 10) 8.4 – 0.9 (68 – 10)

Mean caffeine intake during DCCT (mg/day) 369 – 329 369 – 342
Mean caffeine intake during EDIC (mg/d)f 301 – 218 288 – 209
Time between caffeine intake assessment and SIF1 (years)g 11.1 – 1.1 11.0 – 1.0
rs1495741 genotype (AA/AG/GG)h 342/189/24 307/191/28
SIF1LED 375nm, kx = 0.6, km = 0.2 (arbitrary units)i 3.1 – 0.2 3.1 – 0.21
SIF14LED 456nm, kx = 0.4, km = 0.8 (arbitrary units)i 0.37 – 0.23 0.36 – 0.23

Data are n (%) or mean – SD values as indicated (n = 1,185).
aTwo cohorts were recruited at DCCT baseline: a primary cohort (n = 726) of subjects with no retinopathy and a urinary albumin

excretion rate of <40 mg/24 h at baseline and a secondary cohort (n = 715) of subjects exhibiting mild to moderate nonproliferative
retinopathy and urinary albumin excretion rate of £200 mg/24 h at baseline.

bClinic latitude was categorized as a binary variable with clinics located above 37�N latitude designated as northern clinics (n = 21) and
those below assigned as southern clinics (n = 7).

cSmoking status was defined as ‘‘never smoker’’ (£100 cigarettes in a subject’s lifetime), ‘‘former smoker’’ (quit ‡1 year ago), or
‘‘current smoker’’ (currently smoking or smoking within the last year).

dEstimated glomerular filtration rate (eGFR) was estimated using the Chronic Kidney Disease–Epidemiology Collaboration equation.
eTime-weighted mean glycated hemoglobin (HbA1c) is calculated by summing (DCCT eligibility HbA1c · duration of diabetes at DCCT

baseline), (DCCT mean HbA1c · years of follow-up in DCCT), and (Epidemiology of Diabetes Interventions and Complications [EDIC]
mean HbA1c · years of follow-up in EDIC) and dividing by total duration of diabetes.

fTwo subjects in the intensive treatment (INT) group and two in the conventional treatment (CON) group did not have dietary caffeine
intake available.

gThe minimum lag time between measures of caffeine intake during EDIC and measures of SIF was 4 years.
hOne hundred four subjects did not have rs1495741 genotype data available.
iLn transformed.
LED, light-emitting diode.

Table 2. Association of Caffeine Intake During the Epidemiology of Diabetes Interventions

and Complications Study with Skin Intrinsic Fluorescence

SIF outcome (excitation wavelength), model Variance b – SE P value

SIF1 (375 nm)kx = 0.6, km = 0.2
a

Unadjusted (M1) 11.2% 0.000321 – 2.63E-05 2.28 · 10-32

Adjusted (M2) 3.8% 0.000203 – 2.43E-05 1.66 · 10-16

SIF14 (456 nm)kx = 0.4, km = 0.8
a

Unadjusted (M1) 10.7% 0.000356 – 3E-05 7.19 · 10-31

Adjusted (M2) 4.2% 0.000244 – 2.98E-05 7.19 · 10-16

The value of b – SE was obtained from linear regression (n = 1,181). Variance was calculated as a type II squared semipartial correlation.
Adjusted models included age, sex, skin tone, clinic latitude, smoking status, any estimated glomerular filtration rate of <60 mL/min/
1.73 m2, Diabetes Control and Complications Trial eligibility hemoglobinA1c, mean Diabetes Control and Complications Trial hemoglobin
A1c, and mean Epidemiology of Diabetes Interventions and Complications hemoglobin A1c as covariates.

aLn transformed.
M1, Model 1; M2, Model 2; SIF, skin intrinsic fluorescence.
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10-7 – 8 · 10-8 [P = 0.03]) and SIF14LED 456 nm[0.4, 0.8] (blinear –
SE, 0.0003 – 0.00003 [P = 1.0 · 10-16]; bquadratic –SE, - 1.9 ·
10-7 – 1 · 10-7 [P = 0.05]).

Caffeine intake during DCCT was consistently positively as-
sociated with SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8],
independently accounting for 2.7% and 2.3% of the variance,
respectively, after adjusting for covariates in M2 (Supplementary
Table S3). Mean caffeine intakes from both the DCCT and
the EDIC study were independently associated with SIF1LED

375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8] when included in the
model together, with the exception for the association of mean
caffeine intake during DCCT with SIF14LED 456 nm[0.4, 0.8] in M2
(Supplementary Table S4).

As reported previously,10 rs1495741 was significantly as-
sociated with SIF1LED 375 nm[0.6, 0.2] (b – SE, -0.065 – 0.010;
P = 6.1 · 10-10) and SIF14LED 456 nm[0.4, 0.8] (b– SE, -0.125 –
0.011; P = 8.06 · 10-27). The results were even stronger after
adjusting for M2 covariates for SIF1LED 375 nm[0.6, 0.2] (b– SE,
-0.060 – 0.008; P = 1.7 · 10-12) and SIF14LED 456 nm[0.4, 0.8]

(b– SE, -0.123 – 0.0096; P = 1.4 · 10-34). Each copy of the
G allele was associated with lower SIF, explaining 3.5%
and 10.1% of the variance in SIF1LED 375 nm[0.6, 0.2] and
SIF14LED 456 nm[0.4, 0.8], respectively.10 Because NAT2 metabo-
lizes aromatic amines found in tobacco smoke11 and because
smoking status is an important confounder, we tested whether
the NAT2 (rs1495741) effect was modified by smoking status.
However, there was no significant interaction of rs1495741
with smoking status on SIF1LED 375 nm[0.6, 0.2] (P = 0.13)10 or
SIF14LED 456 nm[0.4, 0.8] (P = 0.39).

Prior to determining the joint effects of rs1495741 and
mean caffeine intake during the EDIC study on SIF, we
showed that rs1495741 was not associated with mean caf-
feine intake either during the EDIC study (P = 0.51) or the
DCCT (P = 0.42). Then we showed that models containing
both rs1495741 and caffeine intake during EDIC were in-
dependently associated with SIF1LED 375 nm[0.6, 0.2] and
SIF14LED 456 nm[0.4, 0.8] in fully adjusted analyses (Table 3).

To determine whether the associations for caffeine intake
on SIF are due to caffeine or other constituents found in
coffee, which may correlate with caffeine intake, we tested
whether frequency of coffee, decaffeinated coffee, tea, and
caffeinated cola (regular and low-calorie) consumption was
associated with SIF. Supplementary Table S5 shows the

number of subjects reporting a mean consumption of at least
once per month for each beverage during EDIC years 13–15.
In both Spearman correlation (rSIF1 = 0.27; rSIF14 = 0.28;
P < 0.0001) and in adjusted regression analysis, mean coffee
intake was positively associated with SIF1LED 375 nm[0.6, 0.2]

(P = 8.9 · 10-12) and SIF14LED 456 nm[0.4, 0.8] (P = 4.4 · 10-12).
Decaffeinated coffee consumption, however, was not as-
sociated with SIF1LED 375 nm[0.6, 0.2] (r = 0.02; P = 0.53) or
SIF14LED 456 nm[0.4, 0.8] (r = 0.01; P = 0.73) in either type of
analysis, even after restricting the analysis to subjects report-
ing a mean consumption of >1 cup of caffeinated coffee once
weekly (Spearman rSIF1 = - 0.03, P = 0.39; rSIF14 = - 0.02,
P = 0.57).

Tea consumption was associated with SIF1LED 375 nm[0.6, 0.2]

in Spearman correlations (r = 0.06, P = 0.04) but not in ad-
justed regression analyses (P = 0.13).

Because 84% of subjects reported consuming regular, caf-
feinated cola never or less than once per month, we did not use
this variable in analyses. However, low-calorie caffeinated
cola in Spearman analyses was associated with SIF14LED

456 nm[0.4, 0.8] (r = 0.08, P = 0.006) and in covariate adjusted an-
alyses was associated with both SIF1LED 375 nm[0.6, 0.2] (P = 0.04)
and SIF14LED 456 nm[0.4, 0.8] (P = 0.02).

Finally, when including both mean coffee intake and mean
caffeine consumption in the model, the effect for mean coffee
intake disappears (P = 0.19 for SIF1LED 375 nm[0.6, 0.2] and
P = 0.09 for SIF14LED 456 nm[0.4, 0.8]), and the positive asso-
ciation for caffeine consumption persists (P = 1.9 · 10-5 for
SIF1LED 375nm[0.6,0.2];P =1.3 ·10-4 forSIF14LED 456nm[0.4,0.8];M2
analyses).

Replication in the Pittsburgh EDC study

Subject characteristics at the time of SIF assessment are
shown in Supplementary Table S6. At the time of diet as-
sessment, mean participant age was 31 years with diabetes
duration of 22 years. Caffeine was positively associated with
SIF1LED 375 nm[0.6, 0.2] (Spearman r = 0.31, P < 0.0001), simi-
lar to the effect size observed in the DCCT/EDIC study, ac-
counting for 9.6% of the SIF1LED 375 nm[0.6, 0.2] variance in
unadjusted analyses. Similar to the effect observed in
the DCCT/EDIC study, rs1495741 was associated with
SIF1LED 375 nm[0.6, 0.2] (b – SE, -0.08 – 0.03; P = 0.002) and

Table 3. Association of rs1495741 and Caffeine Intake During the Epidemiology of

Diabetes Interventions and Complications Study with Skin Intrinsic Fluorescence

SIF outcome (excitation wavelength),
predictor Variance b – SE P value

SIF1 (375 nm)kx = 0.6, km = 0.2
a

rs1495741 2.9% - 0.0596 – 0.008 4.24E-13
Caffeine 3.8% 0.000203 – 2.42E-05 1.93E-16

SIF14 (456 nm)kx = 0.4, km = 0.8
a

rs1495741 9.7% - 0.12265 – 0.009 2.98E-36
Caffeine 4.3% 0.000245 – 2.8E-05 7.86E-18

Data shown are b – SE from linear regression models including both rs1495741 and caffeine intake during Epidemiology of Diabetes
Interventions and Complications effects with SIF1LED 375 nm[0.6,0.2] and SIF14LED 456 nm[0.4, 0.8], after adjusting for age, sex, skin tone, clinic
latitude, smoking status, any estimated glomerular filtration rate of <60 mL/min/1.73 m2, Diabetes Control and Complications Trial
eligibility hemoglobin A1c, mean Diabetes Control and Complications Trial hemoglobin A1c, and mean Epidemiology of Diabetes
Interventions and Complications hemoglobin A1c (n = 1,077). Variance was calculated as a type II squared semipartial correlation.

aLn transformed.
LED, light-emitting diode; SIF, skin intrinsic fluorescence.
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SIF14LED 456 nm[0.4, 0.8] (b – SE, -0.14 – 0.03; P = 1.5 · 10-5),
with each copy of the G allele associated with lower SIF. In
adjusted models (Supplementary Table S7), rs1495741 was
independently associated with SIF1LED 375 nm[0.6, 0.2], but the
effect for caffeine intake was attenuated and no longer sig-
nificant (P = 0.12). For SIF14LED 456 nm[0.4, 0.8], however, both
rs1495741 and caffeine intake were independently associated
with SIF14LED 456 nm[0.4, 0.8] (Supplementary Table S7).

Discussion

We recently identified rs1495741, near NAT2, as a major
locus for skin fluorescence in subjects with and without di-
abetes.10 Given the role of NAT2 in caffeine metabolism, we
examined whether caffeine is associated with SIF, as well as
whether the effect of NAT2 (rs1495741) on SIF is indepen-
dent of caffeine consumption. Here we show that caffeine
contributes a proportion of the interindividual variability in
SIF measures. Our findings were consistent within the
DCCT/EDIC cohort using caffeine data from the DCCT and
the EDIC study periods separately and replicated in an in-
dependent type 1 diabetes study. Finally, the effect of
rs1495741 on SIF appears to be in part independent of caf-
feine consumption.

To our knowledge, this is the first study to test for an
association between caffeine intake and SIF. A previous
study of 147 elderly Dutch subjects examining the relation-
ship of dietary AGEs with skin autofluorescence found no
significant association between coffee consumption and skin
autofluorescence.23 Although the excitation level of SIF1LED

375 nm[0.6, 0.2] is similar to that used by the AGE Reader in the
Dutch study (peak excitation, 360 nm) there are several rea-
sons that may explain the discrepancy in results between the
current study and the former study. First, skin collagen pro-
duction is altered in the elderly24 and therefore may result in
no association observed in older subjects. Second, it is not
clear how coffee intake was measured by the food hab-
its questionnaire used, as well as whether there was any
distinction between caffeinated and decaffeinated coffee con-
sumption.23 In the EDIC study, participants reported con-
sumption of both decaffeinated and caffeinated coffee, and we
observed a stronger association with SIF when using total
caffeine intake versus caffeinated coffee consumption. Finally,
The Netherlands has one of the highest consumptions of caf-
feine in the world,25 and coffee intakes were higher in the
Dutch study with a mean consumption of 3.4 cups/day, com-
pared with a median of 1 cup of caffeinated coffee daily in the
EDIC study. If a nonlinear caffeine–SIF effect exists, whereby
there is little association at the upper end of intakes on SIF, then
null associations may be observed among high caffeine con-
sumers; however, the range of coffee intake was not stated.23

We showed that mean caffeine intake was associated with
SIF, independent of age and smoking. Caffeine is positively
correlated with age among American adults up to 64 years of
age and higher in smokers.26,27 Adjusting for both age and
smoking attenuated the caffeine–SIF association as they were
also positively associated with caffeine intake and SIF in the
EDIC study. HbA1c was also shown to contribute to the
attenuation in the relationship for mean caffeine intake dur-
ing EDIC and SIF14LED 456 nm[0.4, 0.8]. This was likely due to
the positive association of caffeine intake with HbA1c, which
may result from caffeine inhibiting glucose uptake by skel-

etal muscle and adipocytes, decreasing postprandial glycemic
control.28 In the DCCT/EDIC study, caffeine consumption
independently accounted for 4% of the variability in SIF (in
M2) and, together with rs1495741 and explanatory covariates
adjusted for in M2, cumulatively accounted for more than 40%
of the variance in SIF.

Consistent with our study, NAT2 has not been previously
associated with coffee or caffeine intake. GWAS of coffee29

and caffeine30 intake have identified associations for
CYP1A2 and AHR, both of which are directly and indirectly
involved in caffeine metabolism, respectively. Recently, six
additional loci have been implicated in a GWAS of coffee
consumption.31 Furthermore, a candidate gene approach re-
ported no nominal association of 32 single nucleotdie poly-
morphisms in NAT2 with caffeine intake using gene-based
tests.30 On the other hand, NAT2 has been associated with
1-methylxanthine:4-acetamidobutanoate, reflecting metabo-
lites of caffeine metabolism in a GWAS of serum metabo-
lites.13 Similarly, a GWAS of urinary metabolite ratios
identified a polymorphism in perfect linkage disequilibrium
with rs1495741 to be associated with formate:succinate levels
(P = 5.1 · 10-16).32 Formate may reflect degradation of caffeine
because NAT2 metabolizes an intermediate caffeine metabolite
and produces 5-acetylamino-6-formylamino-3-methyluracil,12

which undergoes deformylation in the urine.33

Given that caffeine metabolites are commonly used as a
probe for NAT2 acetylation status12,33 and that caffeine is
associated with SIF, we examined whether the effects
of rs1495741 and caffeine are independent. We showed
that each was associated with SIF1LED 375 nm[0.6, 0.2] and
SIF14LED 456 nm[0.4, 0.8] when included in the model together,
thus suggesting that the relationship is likely independent.
However, because NAT2 was not associated with caffeine
intake in the DCCT/EDIC study or in previous studies29–31

but instead has been shown to be associated with caffeine
metabolite ratios,13,34 future studies measuring caffeine me-
tabolites are needed to more concretely examine their inde-
pendent effects,35 as well as establishing whether caffeine
metabolites are associated with SIF.

Caffeine readily crosses all biological membranes,25 and
ingested caffeine has been implicated in protecting against
ultraviolet B–induced skin carcinoma in epidemiolog-
ical and animal studies, partly by protecting the skin as
a sunscreen.36,37 Caffeine was associated with both
SIF1LED 375 nm[0.6, 0.2] and SIF14LED 456 nm[0.4, 0.8], which cap-
ture common fluorophores such as AGEs, but also distinct
chemicals at each end of the spectrum.2,18 Indeed, caffeine
was shown to exhibit fluorescent properties with excitation/
emission wavelengths in the ultraviolet range 311/363 nm,14

but this level was not captured by SIF1LED 375 nm[0.6, 0.2], the
lowest excitation LED examined in the DCCT/EDIC and
the EDC study. Alternatively, the caffeine–SIF association
we observed may reflect the effect of caffeine on photolysis
of riboflavin,38 which has excitation/emission maxima of
450/520 nm, corresponding with SIF14LED 456 nm[0.4, 0.8].

39

Because caffeine can bind to riboflavin and inhibit photoly-
sis,38 individuals with high caffeine intake may have higher
levels of riboflavin in the skin, resulting in higher skin fluo-
rescence. Finally, we cannot rule out the possibility of the
caffeine–SIF association reflecting fluorescence levels of
AGEs. We addressed this by adjusting for HbA1c, and al-
though the effect of caffeine on SIF14LED 456 nm[0.4, 0.8] was
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attenuated, it was still significant. Further studies are needed
to determine which fluorophore is responsible for the caf-
feine–SIF association.

Because SIF is positively associated with subclinical
atherosclerosis and/or cardiovascular disease mortality,3–7

our results suggest that adjusting for caffeine and/or coffee
intake may improve prediction estimates for SIF with car-
diovascular disease because in moderate amounts coffee
consumption may be protective against cardiovascular dis-
ease.26,40 Similarly, because SIF has been proposed as an
alternative noninvasive screening tool in comparison with
fasting glucose levels in identifying individuals with predi-
abetes or type 2 diabetes mellitus,41 adjusting for caffeine
and/or coffee intake may alter prediction estimates. Com-
ponents other than caffeine in coffee, such as chlorogenic
acid, may be protective against type 2 diabetes mellitus42 and
AGE formation,43 and therefore adjustment for coffee or
caffeine as a marker of coffee intake may be useful.

The last measure of caffeine consumption was assessed 4
years prior to SIF in the EDIC study and 8 years prior to SIF in
the Pittsburgh EDC study, but despite this, the caffeine–SIF
association was robust both within the DCCT/EDIC study and
replicated in the EDC study. Food sources contributing to caf-
feine intake were only available during EDIC years 13–15, and
mean intakes of decaffeinated coffee and regular soda con-
sumption were low, somewhat limiting the power of these an-
alyses. Future studies in populations where interindividual
intakes for these beverages vary more widely are needed to
confirm our observations suggesting that the caffeine–SIF as-
sociation is due to caffeine and not other components highly
correlated with caffeine in coffee or other caffeine food sources.
Finally, studies are needed in subjects without diabetes to de-
termine whether the association is diabetes-specific.

In conclusion, our study clearly demonstrates that caffeine
is an important contributor to the interindividual variability
of SIF measures in people with type 1 diabetes. The associ-
ation for caffeine intake with SIF appears to be due to caf-
feine and/or its metabolites rather than other constituents in
coffee. Finally, the effect of rs1495741 on SIF is shown to be
at least in part independent of caffeine consumption. Ac-
counting for rs1495741 and caffeine intake may alter SIF
prediction estimates for risk of cardiovascular disease, pre-
diabetes, and type 2 diabetes mellitus.
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