65 research outputs found

    fMR-Adaptation Reveals Invariant Coding of Biological Motion on the Human STS

    Get PDF
    Neuroimaging studies of biological motion perception have found a network of coordinated brain areas, the hub of which appears to be the human posterior superior temporal sulcus (STSp). Understanding the functional role of the STSp requires characterizing the response tuning of neuronal populations underlying the BOLD response. Thus far our understanding of these response properties comes from single-unit studies of the monkey anterior STS, which has individual neurons tuned to body actions, with a small population invariant to changes in viewpoint, position and size of the action being viewed. To measure for homologous functional properties on the human STS, we used fMR-adaptation to investigate action, position and size invariance. Observers viewed pairs of point-light animations depicting human actions that were either identical, differed in the action depicted, locally scrambled, or differed in the viewing perspective, the position or the size. While extrastriate hMT+ had neural signals indicative of viewpoint specificity, the human STS adapted for all of these changes, as compared to viewing two different actions. Similar findings were observed in more posterior brain areas also implicated in action recognition. Our findings are evidence for viewpoint invariance in the human STS and related brain areas, with the implication that actions are abstracted into object-centered representations during visual analysis

    Who\u27s That Knocking at My Door? Neural Bases of Sound Source Identification

    Get PDF
    When hearing knocking on a door, a listener typically identifies both the action (forceful and repeated impacts) and the object (a thick wooden board) causing the sound. The current work studied the neural bases of sound source identification by switching listeners\u27 attention toward these different aspects of a set of simple sounds during functional magnetic resonance imaging scanning: participants either discriminated the action or the material that caused the sounds, or they simply discriminated meaningless scrambled versions of them. Overall, discriminating action and material elicited neural activity in a left-lateralized frontoparietal network found in other studies of sound identification, wherein the inferior frontal sulcus and the ventral premotor cortex were under the control of selective attention and sensitive to task demand. More strikingly, discriminating materials elicited increased activity in cortical regions connecting auditory inputs to semantic, motor, and even visual representations, whereas discriminating actions did not increase activity in any regions. These results indicate that discriminating and identifying material requires deeper processing of the stimuli than discriminating actions. These results are consistent with previous studies suggesting that auditory perception is better suited to comprehend the actions than the objects producing sounds in the listeners\u27 environment

    Capacity Building for a New Multicenter Network Within the ECHO IDeA States Pediatric Clinical Trials Network

    Get PDF
    Introduction: Research capacity building is a critical component of professional development for pediatrician scientists, yet this process has been elusive in the literature. The ECHO IDeA States Pediatric Clinical Trials Network (ISPCTN) seeks to implement pediatric trials across medically underserved and rural populations. A key component of achieving this objective is building pediatric research capacity, including enhancement of infrastructure and faculty development. This article presents findings from a site assessment inventory completed during the initial year of the ISPCTN. Methods: An assessment inventory was developed for surveying ISPCTN sites. The inventory captured site-level activities designed to increase clinical trial research capacity for pediatrician scientists and team members. The inventory findings were utilized by the ISPCTN Data Coordinating and Operations Center to construct training modules covering 3 broad domains: Faculty/coordinator development; Infrastructure; Trials/Research concept development. Results: Key lessons learned reveal substantial participation in the training modules, the importance of an inventory to guide the development of trainings, and recognizing local barriers to clinical trials research. Conclusions: Research networks that seek to implement successfully completed trials need to build capacity across and within the sites engaged. Our findings indicate that building research capacity is a multi-faceted endeavor, but likely necessary for sustainability of a unique network addressing high impact pediatric health problems. The ISPCTN emphasis on building and enhancing site capacity, including pediatrician scientists and team members, is critical to successful trial implementation/completion and the production of findings that enhance the lives of children and families

    Strategies to prevent intraoperative lung injury during cardiopulmonary bypass

    Get PDF
    During open heart surgery the influence of a series of factors such as cardiopulmonary bypass (CPB), hypothermia, operation and anaesthesia, as well as medication and transfusion can cause a diffuse trauma in the lungs. This injury leads mostly to a postoperative interstitial pulmonary oedema and abnormal gas exchange. Substantial improvements in all of the above mentioned factors may lead to a better lung function postoperatively. By avoiding CPB, reducing its time, or by minimizing the extracorporeal surface area with the use of miniaturized circuits of CPB, beneficial effects on lung function are reported. In addition, replacement of circuit surface with biocompatible surfaces like heparin-coated, and material-independent sources of blood activation, a better postoperative lung function is observed. Meticulous myocardial protection by using hypothermia and cardioplegia methods during ischemia and reperfusion remain one of the cornerstones of postoperative lung function. The partial restoration of pulmonary artery perfusion during CPB possibly contributes to prevent pulmonary ischemia and lung dysfunction. Using medication such as corticosteroids and aprotinin, which protect the lungs during CPB, and leukocyte depletion filters for operations expected to exceed 90 minutes in CPB-time appear to be protective against the toxic impact of CPB in the lungs. The newer methods of ultrafiltration used to scavenge pro-inflammatory factors seem to be protective for the lung function. In a similar way, reducing the use of cardiotomy suction device, as well as the contact-time between free blood and pericardium, it is expected that the postoperative lung function will be improved

    New Approaches to Enforcement and Compliance with Labour Regulatory Standards: The Case of Ontario, Canada

    Full text link

    The Influence of Law and Economics Scholarship on Contract Law: Impressions Twenty-Five Years Later

    Full text link

    Comparing visual representations across human fMRI and computational vision.

    No full text
    <p>Feedforward visual object perception recruits a cortical network that is assumed to be hierarchical, progressing from basic visual features to complete object representations. However, the nature of the intermediate features related to this transformation remains poorly understood. Here, we explore how well different computer vision recognition models account for neural object encoding across the human cortical visual pathway as measured using fMRI. These neural data, collected during the viewing of 60 images of real-world objects, were analyzed with a searchlight procedure as in Kriegeskorte, Goebel, and Bandettini (2006): Within each searchlight sphere, the obtained patterns of neural activity for all 60 objects were compared to model responses for each computer recognition algorithm using representational dissimilarity analysis (Kriegeskorte et al., 2008). Although each of the computer vision methods significantly accounted for some of the neural data, among the different models, the scale invariant feature transform (Lowe, 2004), encoding local visual properties gathered from "interest points," was best able to accurately and consistently account for stimulus representations within the ventral pathway. More generally, when present, significance was observed in regions of the ventral-temporal cortex associated with intermediate-level object perception. Differences in model effectiveness and the neural location of significant matches may be attributable to the fact that each model implements a different featural basis for representing objects (e.g., more holistic or more parts-based). Overall, we conclude that well-known computer vision recognition systems may serve as viable proxies for theories of intermediate visual object representation.</p
    corecore