
Bucknell University Bucknell University 

Bucknell Digital Commons Bucknell Digital Commons 

Faculty Journal Articles Faculty Scholarship 

2018 

Who's That Knocking at My Door? Neural Bases of Sound Source Who's That Knocking at My Door? Neural Bases of Sound Source 

Identification Identification 

Guillaume Lemaitre 

John A. Pyles 

Andrea R. Halpern 
Bucknell University, ahalpern@bucknell.edu 

Nicole Navolio 

Matthew Lehet 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.bucknell.edu/fac_journ 

 Part of the Cognitive Psychology Commons, and the Music Commons 

Recommended Citation Recommended Citation 
Lemaitre, Guillaume; Pyles, John A.; Halpern, Andrea R.; Navolio, Nicole; Lehet, Matthew; and Heller, Laurie 
M.. "Who's That Knocking at My Door? Neural Bases of Sound Source Identification." Cerebral Cortex 
(2018) : 805-818. 

This Article is brought to you for free and open access by the Faculty Scholarship at Bucknell Digital Commons. It 
has been accepted for inclusion in Faculty Journal Articles by an authorized administrator of Bucknell Digital 
Commons. For more information, please contact dcadmin@bucknell.edu. 

https://digitalcommons.bucknell.edu/
https://digitalcommons.bucknell.edu/fac_journ
https://digitalcommons.bucknell.edu/faculty-scholarship
https://digitalcommons.bucknell.edu/fac_journ?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/408?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/518?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1477&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu


Authors Authors 
Guillaume Lemaitre, John A. Pyles, Andrea R. Halpern, Nicole Navolio, Matthew Lehet, and Laurie M. 
Heller 

This article is available at Bucknell Digital Commons: https://digitalcommons.bucknell.edu/fac_journ/1477 

https://digitalcommons.bucknell.edu/fac_journ/1477


Cerebral Cortex, March 2018;28: 805–818

doi: 10.1093/cercor/bhw397
Advance Access Publication Date: 4 January 2017
Original Article

O R I G I NA L ART I C L E

Who’s that Knocking at My Door? Neural Bases
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Abstract
When hearing knocking on a door, a listener typically identifies both the action (forceful and repeated impacts) and the
object (a thick wooden board) causing the sound. The current work studied the neural bases of sound source identification
by switching listeners’ attention toward these different aspects of a set of simple sounds during functional magnetic
resonance imaging scanning: participants either discriminated the action or the material that caused the sounds, or they
simply discriminated meaningless scrambled versions of them. Overall, discriminating action and material elicited neural
activity in a left-lateralized frontoparietal network found in other studies of sound identification, wherein the inferior
frontal sulcus and the ventral premotor cortex were under the control of selective attention and sensitive to task demand.
More strikingly, discriminating materials elicited increased activity in cortical regions connecting auditory inputs to
semantic, motor, and even visual representations, whereas discriminating actions did not increase activity in any regions.
These results indicate that discriminating and identifying material requires deeper processing of the stimuli than
discriminating actions. These results are consistent with previous studies suggesting that auditory perception is better
suited to comprehend the actions than the objects producing sounds in the listeners’ environment.

Key words: action sounds, auditory cognition, dorsal and ventral pathways, sound identification

Introduction
Behavioral and neuroimaging studies investigating the percep-
tion of environmental sounds typically address different issues
(i.e., sounds produced in a human environment, excluding music,
speech, and animal vocalizations). On the one hand, behavioral
studies have almost exclusively focused on the objects producing
the sound: their shape, size, or material (Lakatos et al. 1997;
Klatzky et al. 2000; Kunkler-Peck and Turvey 2000; Carello et al.
2005; Giordano et al. 2010; Lemaitre et al. 2010; McAdams et al.
2010; Houix et al. 2012). On the other hand, many auditory neu-
roimaging studies have focused on sound of human-generated
actions. No study has contended with the fact that both types of
information are usually simultaneously available in sounds:

when someone is knocking on a door, listeners hear both the
knocking and the door. We recently compared identification of
objects and actions for the same sounds, and found a notable
advantage for action identification (Lemaitre and Heller 2012).
Following up on these results, the present work studied neural
activations elicited by focusing participants’ attention either
toward the objects or the actions that created the same sounds
in a discrimination task.

Auditory processing is hierarchically organized, with pro-
cessing becoming more abstract as the distance to primary
auditory cortex increases (Binder et al. 2000; Goll et al. 2011; see
also Giordano et al. 2010 for a review). One model further char-
acterizes the auditory system as having both a ventral and a
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dorsal stream, mirroring the dual stream model for vision
(Goodale and Milner 1992; see McIntosh and Schenk 2009 for
review). In this model, the ventral stream projects anteriorly
along the superior temporal gyrus (STG) toward the inferior
frontal gyrus (IFG), and the dorsal stream projects posteriorly
through STG and middle temporal gyrus (MTG) toward inferior
parietal lobule (IPL) and intraparietal sulcus (IPS) and then to
motor and premotor regions in the frontal lobe. The ventral
stream (the “what pathway,” “hearing for perception”) is inter-
preted as processing invariant object properties, and the dorsal
stream (the “how” and “where” pathway, or “hearing for
action”) processes spatial properties necessary to guide actions
(Alain et al. 2001; Arnott et al. 2004; Zatorre et al. 2004, 2007;
Borst et al. 2011; Arnott and Alain 2011).

The dual stream hypothesis is illustrated by a series of stud-
ies of human action sound identification (Lewis et al. 2004,
2005, 2011, 2012; Lewis 2006, 2010; Engel et al. 2009). Overall,
these studies show a striking distinction between the cortical
networks involved in processing different types of sounds.
Sounds made by human actions activate a large network of cor-
tical areas (the “action-sound network”): a left-lateralized fron-
toparietal network corresponding to the dorsal stream, and a
bilateral complex located in the posterior superior temporal
sulcus and MTG (the pSTS/MTG complex). In contrast, sounds
produced by nonliving (nonbiological) sources preferentially
activate cortical regions affiliated with visual form, feature and
object recognition (occipital and parahippocampal regions), cor-
responding to the ventral stream.

The frontoparietal network includes IFG, inferior frontal sul-
cus (IFS), and particularly the junction of the IFS and the precen-
tral sulcus (corresponding to the ventral premotor cortex
(VPMC)). It also includes a region centered on the IPS and spread-
ing to the inferior and superior parietal lobules (IPL and SPL). IFG
is thought to be binding sounds’ spectrotemporal features and
conceptual representations (Adams and Janata 2002; Amedi et al.
2007; Kaplan and Iacoboni 2007) and motor programs (in VPMC
in particular, see Keysers et al. 2003; Aglioti and Pazzaglia 2010).
The functional roles of IPS and IPL are usually interpreted as the
integration of auditory information about actions with other sen-
sory modalities (mainly vision), and a form of “action replay”
(Arnott et al. 2008). Furthermore, this frontoparietal network
overlaps with regions activated when participants manipulate
tools. Therefore, Lewis and colleagues interpreted the fronto-
parietal network as “praxis” or “audio-motor association” sys-
tem, presumably linking one’s own motor repertoire with
sound production within the dorsal stream. The pSTS/MTG
complex is sensitive to audio, visual, and audiovisual presen-
tations of nonbiological and biological motions (Beauchamp
et al. 2002, 2003, 2004; Bidet-Caulet et al. 2005; Grossman et al.
2005; Doehrmann et al. 2008), and even words denoting action
(Kiefer et al. 2012). Activity in this region is usually interpreted
as reflecting a multimodal (and possibly amodal or supramo-
dal) representation of biological motion.

Fewer neuroimaging studies have focused on auditory recov-
ery of object properties, with somewhat inconsistent results
(see for instance Arnott et al. 2008). In particular, James et al.
(2011) had participants match 2 consecutive sound stimuli pro-
duced by dropping objects either based on the material or the
shape of the objects. Although the stimuli were the same, the
experiment shifted the participants’ attention to either the
shape or the material of the objects producing the sounds. Their
results showed that matching of shape resulted in more activa-
tion in an area located at the junction of the left posterior MTG
and the occipital lobe. Because this region is also sensitive to

visual and haptic shape identification, the authors interpreted it
as an amodal shape operator. There was no evidence of a
material specific area, although a more liberal criterion resulted
in activity in the lingual gyri, a visual area found for material
processing (Cant and Goodale 2007). Note also that activation of
early visual areas by auditory stimuli has been reported in other
studies (Vetter et al. 2014).

In a recent study, we compared the cortical areas coding dif-
ferent actions (hitting, shaking, and squeezing), different objects
(liquids and solids), and different sound events resulting from
the combination of the actions and objects (Lehet et al. submit-
ted). The results showed that there is a large overlap between
the cortical networks coding the different actions and the differ-
ent sound events (including the dorsal auditory pathway, the
hand motor area, and some visual area), whereas only a small
area in the primary auditory cortex is responsive to the different
materials. This suggests that listening to environmental sound
events is coupled to identifying underlying actions.

Many of the aforementioned studies have contrasted different
categories of sounds (e.g., sounds of actions vs. control sounds)
defined by both their semantic content (e.g., perceived action or
not) and consisting of different sounds. Thus, Giordano et al.
(2012) have noted that some of the differences observed between
action sounds and their controls could have been at least par-
tially driven by acoustic differences. Furthermore, because all
previous studies focused participants’ attention toward the
actions or the objects creating the sounds (but not both), it is also
not clear how much of the observed activations reflected the
result of the sound categories or the participants’ attention to a
particular type of information.

The goal of the current research was to isolate the influence
of selective auditory attention toward object or action on the cor-
tical activity within the networks subserving sound identifica-
tion. We used sets of sounds for which listeners could
successfully identify both the action and the object, and we
manipulated the focus of attention toward either action or object
properties by using different discrimination tasks. These sounds
consisted of recordings of easily discriminable sounds created by
tapping and scraping metal and plastic pipes. Each stimulus con-
sisted of a pair of sounds, and we focused participants’ attention
by requiring them to indicate whether the actions or the material
of the 2 sounds were the same or different. We also added a con-
trol task in which participants compared scrambled versions of
the action sounds (meaningless noises sharing the same long-
term acoustical properties of other stimuli). This allowed for the
comparison of 2 “meaningful” tasks (discrimination based on
material or action) and an “acoustic” task (discrimination based
solely on meaningless acoustic differences). We used a slow
event-related design with different blocks (one task per block),
with a fixed inter-trial interval (one stimulus per trial; see also
Figure A in Supplementary material).

Two aspects of the design could modulate neural activity: the
selection and processing of relevant auditory features, and the
change of attention from block to block (see Petersen and Posner
(2012) for a review of the different roles of attention). Several
studies have shown that attention to different auditory features
(spatial location, pitch, intensity, and timbre) can modulate
activity at all levels of auditory processing, including auditory
cortices, brainstem and the cochlea, though there are still
debates as to whether attention does modulate activity in brain-
stem and cochlea (Pugh et al. 1996; Lipschutz et al. 2002;
Falkenberg et al. 2011; Paltoglou et al. 2011; see Fritz et al. 2007;
Caporello Bluvas and Gentner 2013 for a review). Attention can
also modulate cortical activity in auditory areas thought to
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perform early categorization of sounds (Ahveninen et al. 2006;
Bidelman et al. 2013). For instance, Mesgarani and Chang (2012)
showed that activity in posterior STG could predict which
speaker listeners were attending to while they were hearing a
mixture of 2 concurrent speech signals. Therefore, a first hypoth-
esis was that attention-based differences between tasks would
modulate activity in primary and secondary auditory regions.

It is in theory possible that discriminating action or material
would rely only on processing auditory features (e.g., attack
time for discriminating actions, spectral decay for discriminat-
ing material), without involving deeper processing of the iden-
tity of the sound sources: listeners could simply listen to
acoustic parameters without making sense of the sounds.
However, Kaplan and Iacoboni (2007) have reported activity in
the action-sound network even when participants were pas-
sively listening to the sounds, suggesting that this network
would process the sounds’ identity even if the listeners were
only attending the sounds’ superficial properties. Thus, another
hypothesis was that selective attention toward objects or
actions would be reflected in the cortical networks subserving
sound identification (action and object). In such an account,
focusing on the actions that produce the sounds may result in
an overall increased activity in the action-sound network
(Lewis 2010). It may also result in different patterns of activity
reflecting the coding of the different pieces of information.

Another possibility was that the changes of attention them-
selves could modulate cortical activity. For instance, Corbetta
and Shulman (2002) have shown that there is a frontoparietal
network that responds to changes of visual attention toward
different locations, shape or color (i.e., top down control of
attention): the dorsal attention network. It comprises the intra-
parietal cortex, the superior frontal cortex (frontal eye field).
Frontoparietal signals driven by attentional shifts are observed
in most of the studies manipulating auditory attention, sug-
gesting a domain-independent role of this executive network
(see for instance Shomstein and Yantis 2006 and Falkenberg
et al. 2011). The medial superior parietal lobe in particular is
thought to be a cortical hub for the initiation of attention and
task shifts in multiple domains (Greenberg et al. 2010).

In sum, our hypothesis was that selective auditory attention
to object or action could potentially be reflected in the following
cortical regions: Transverse temporal gyrus and surrounding
regions in STG (processing of acoustic features); left IFG (access
to conceptual representations of objects); left premotor cortex
(PMC) and in particular its ventral part (VPMC linking sensory
inputs to motor repertoire, i.e., frontoparietal network of action
representations); IPL, the temporoparietal junction (TPj), and in
particular IPS in left hemisphere (multimodal integration, action
replay, frontoparietal network of action representations); bilat-
eral pSTS/MTG complex (representation of biological motion);
bilateral parahippocampal regions (anterior cingulate gyrus in
particular: access to semantic information, visual recognition);
bilateral primary occipital regions, lingual and fusiform gyri (vis-
ual processing of surface properties, potentially also activated by
auditory inputs). In addition, we also expected the attention
shifts to be reflected in the executive dorsal attention network.

We used 2 different types of analyses: a general linear mod-
el analysis (GLM), and a multivoxel pattern analysis (MVPA).
The GLM analysis highlighted clusters of voxels whose average
cortical activity (percent change of blood oxygenation level)
was significantly different between the different tasks. In con-
trast, the MVPA identified distributed patterns of activity across
voxels that were different across the different tasks (Norman
et al. 2006; Davis et al. 2014).

Materials and Methods
All participants provided written consent to participate in this
study. This study was approved by the Carnegie Mellon
University Institutional Review Board (HS14-339: Neural Bases
of Sound Event Identification).

Participants

A total of 23 participants (13 females and 10 males) participated
in the study. The data for 6 participants were excluded from the
study due to excessive movement in the fMRI scanner related to
the procedure for fitting the headcoil. All participants were
right-handed (participants filled out the Edinburgh question-
naire, Oldfield 1971), were not highly musically trained (median
0 years, between 0 and 8 years of formal musical training—no
formal training during the last 5 years) and also had normal
hearing verified via an audiogram. Participants were selected on
the basis of a screening test, during which they performed the
same experimental procedure as in the scanner (but with fewer
sounds; see the description below). Only participants who made
a minimal number of mistakes (i.e., <20%), identified the actions
and objects equivalently well, and responded with equivalent
reaction times to both tasks were selected for the main experi-
ment. The resulting selection of 17 participants (6 males and 11
females) ranged from 18 to 34 years old (median 20 years old).

Stimuli

As shown in previous studies (Lemaitre and Heller 2012), action
is fairly easy to identify, whereas this is not necessarily the case
for material. Therefore, we conducted 2 separate behavioral
experiments for the specific purpose of creating sounds with
easily discriminable materials and actions. In the first step, we
manually generated sounds by performing a variety of actions
on hollow cylinders of different materials to determine the com-
binations of materials and actions that would be easiest to iden-
tify by their sound. Participants in a pilot experiment attempted
to identify and discriminate actions and materials. This proced-
ure selected copper and ABS plastic as the most-easily discrim-
inable materials, and scraping and tapping the cylinders on a
heavy wooden board as the most-easily discriminable actions.
Overall, 10 exemplars were created for each combination of the
2 actions and 2 materials (tap-metal, tap-plastic, scrape-metal,
scrape-plastic), resulting in 40 sounds. The actions of the tap-
ping and scraping sounds were altered to produce different
exemplars; for example, the speed of the scraping action was
varied. In the second step, participants attempted to discrimin-
ate and identify the action and material from listening to the
sound. They listened to different pairs of sounds and judged
whether each pair was caused by 2 different actions (or materi-
als) using a 6-point scale ranging from “Very sure” to “Not sure.”
Responses were considered accurate when the 2 actions (or
materials) were different and the participant used the left-hand-
side of the scale (and vice versa). We selected the 24 sounds (6
sets of 4 sounds) that resulted in high accuracy for both action
and material discrimination and equivalent average accuracy
between action and material discrimination.

The sounds were recorded with a 96-kHz sampling rate and
a 24-bit resolution with a Tucker Davis Technologies MA3
microphone preamplifier, a Sound Devices USBPre soundboard,
and an Earthworks QTC 30 microphone in an IAC double-
walled sound-attenuated booth.
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In addition to the cylinder sounds, we created meaningless
versions of the same 24 sounds by scrambling the phase of the
sounds, following the procedure described by Gazzola et al.
(2006). Phase scrambling consists of replacing the phase of each
coefficient of the Fourier transform of the sound by the phase
of another coefficient, randomly chosen. The resulting sounds
have the same long-term amplitude spectrum as the original
sounds, but a completely different temporal envelope and are
thus unidentifiable.

The stimuli used in the experiment consisted of pairs of
sounds. For each of the 6 sets of sounds we selected 8 pairs.
The correct answer to each pair depended on the task (judging
action or material). For instance, the pair “tap-metal/scrape-
metal” corresponds to different actions but same materials.
The selection of these 8 pairs insured that there was always
the same number of same and different answers for the 2 tasks.
Thus, there were a total of 48 pairs of sounds (i.e., 48 stimuli) in
the experiment, and 8 types of pairs reported in Table 1 (We
did not cross every sound with every other sound in every pos-
sible order in order to keep the test runs short enough.). The
stimulus duration (for each pair) ranged from 1.5 to 3.4 s (aver-
age 2.1 s).

Prior to the main experiment, sounds were resampled to
44.1 kHz, 16 bits, and their levels were adjusted to produce the
same loudness: the experimenters listened to each sound and
adjusted their level so that they perceived them at the same
loudness and ensured that they were clearly audible against
the background noise while being at a comfortable level.

Procedures

During the main experiment, participants lay supine in the bore
of the MRI scanner and responded with an MR-compatible but-
ton box affixed to their left hand with tape, using their third fin-
ger to respond “same,” or index finger to respond “different.”
Reaction times (i.e., the asynchrony between the offset of the
sound and participant’s response) and accuracy of the responses
were recorded. Using the left hand ensured than any activation
observed in left motor or premotor areas could not be attributed
to participants’ motor response.

Auditory stimuli were delivered using Matlab 7.10.0 and
Psychophysics toolbox 3.0.9 (Brainard 1997) on an Apple MacBook
Pro running Mac OS 10.6.8, through Sensimetrics S14 insert ear-
phones. Visual stimuli were projected onto a screen located
behind the participant. Participants viewed the screen through a
mirror located above the head coil.

Three tasks occurred in the main experiment: Noise, Action,
and Material. In the Noise task, participants heard the scrambled
versions of the stimuli and judged if the 2 sounds were the same
or different. In the Action task, participants listened to intact
stimuli (pairs of sounds) and judged whether actions were the

same or different, and in the Material task they judged whether
the materials were the same or different. Material and Action
tasks are therefore “meaningful tasks” whereas the Noise task is
a purely “acoustic” task. Each stimulus was presented twice for
each task, resulting in a total of 288 trials (48 stimuli times 2
repetitions times 3 tasks).

The experiment used a slow event-related design. It was
divided into 8 runs. Each run consisted of 6 blocks. Each block
corresponded to 1 of the 3 tasks and consisted of 6 trials. In
each run, the 3 tasks were presented twice each, and the order
of the tasks was randomized for each participant (with the con-
straint that the same task could not occur twice in a row). The
288 trials were randomized for each participant, with the con-
straint that the same pair could not occur twice in a row.

Each run began with a fixation cross, displayed for 10 s, fol-
lowed by the 6 blocks. Each block began with the name of the
task displayed for 5 s, followed by the fixation symbol for 5 s,
and then 6 trials. The fixation symbol consisted of the black let-
ter N for the Noise task, the blue letter A for the Action task, and
the green letter M for the Material task. The fixation symbol was
displayed for the whole duration of the block (70 s). Each trial
began with the pair of sounds (the maximum stimulus duration
was 3.5 s) followed by a period in which the participants could
answer. The inter-trial interval was fixed to 10 s (Figure A in
supplementary material). Because the stimulus duration was
different for each type of pair (Table 1), the interstimulus inter-
val was variable, ranging from 6.5 to 8.4 s (average 7.8 s).

Before proceeding to the main experiment in the scanner,
participants performed a 30-min practice session. They listened
to each sound individually and were presented with its label
(e.g., “metal-scrape”). Then, they made same-different judg-
ments in 3 blocks (Action, Material, Noise), randomly selected
from the main experiment. In the rare cases where the partici-
pants made more than a few mistakes, they did another set of
3 blocks. The goal of this practice session was to further train
participants and to ensure that they could discriminate actions
and materials with near-perfect performance.

Imaging and Analysis Parameters

Magnetic Resonance Imaging Parameters
Whole brain functional magnetic resonance imaging (fMRI) data
were collected from each participant on a 3 T Siemens Verio MR
scanner at the Scientific Imaging & Brain Research Center at
Carnegie Mellon University using a phased array 32-channel
head coil. Functional images were acquired using a T2*-
weighted echoplanar imaging pulse sequence (36 oblique axial
slices, in plane resolution 3mm × 3mm, 3mm slice thickness,
no gap, repetition time TR = 2000ms, echo time TE = 29ms, flip
angle = 79°, GRAPPA = 2, matrix size = 64 × 64). High-resolution
anatomical scans were acquired for each participant using a
T1-weighted MPRAGE sequence (1mm × 1mm × 1mm, 176
sagittal slices, TR = 2300ms, T1 = 900ms, FA = 9°, GRAPPA = 2).
Anatomical scans were acquired between runs 4 and 5.

fMRI data were analyzed with AFNI (version 2011_12_21_1014).
Preprocessing included linear trend removal, spatial smoothing
(with a Gaussian kernel of 6mm full-width at half maximum),
slice-timing correction, and 3D motion correction. Trials with
large motions were excluded from analyses and motion para-
meters were used as regressors of no interest. Incorrect and
missed trials were also removed from analysis. Table 2 reports
the percentage of incorrect and missed trials in each experimen-
tal condition.

Table 1 The 8 types of pairs of sounds used in the experiment.
There were 6 different pairs for each type of pair, resulting in a total
of 48 pairs

TP TM SP SM

TP TP–TP (1.8 s)
TM TM–TP (2.1 s)
SP SP–TP (1.8 s) SP–TM (2.2 s)
SM SM–TP (2.1 s) SM–TM (2.5 s) SM–SP (2.2 s) SM–SM (2.5 s)

TP is “tap-plastic”, TM is “tap-metal”, SP is “scrape-plastic”, SM is “scrape-

metal”. The average duration of each type of pair is reported in parenthesis.
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Anatomical scans volumes were transformed into the com-
mon space of Talairach and Tournoux using a 12-parameter
affine transformation. Functional volumes were coregistered to
the anatomical volumes thus transforming them into the com-
mon stereotactic space.

GLM Analysis
Individual BOLD responses were modeled using a separate
explanatory variable for each combination of the 2 factors (the
3 Tasks and 8 Types of pairs), as well as another explanatory
variable for the first 10 s at the beginning of each block where
the instructions changed to indicate the different tasks (factor
Instruction change with 3 levels: Noise, Action, Material).
Design matrices were constructed from predictors generated
based on the timing of the protocol for the placement of a
canonical double-gamma function (3.5 s, the duration of the
longest stimulus).

In a first group-level analysis, the amplitudes of the canon-
ical responses fitted to the BOLD signal were averaged for each
participant and combination of the 2 factors (Types of pairs and
Tasks) for the experimental trials and fed to a general linear
model analysis (GLM) with the participants as a random factor,
the Task (3 levels: Noise, Action, Material) and the Type of pair
(8 levels, Table 1) as fixed factors, and including the interactions
between the factors. A second, separate group-level analysis
focused only on the first 10 s of each block by treating the aver-
aged canonical response to GLM with participants as a random
factor, and the Instruction changes as a fixed effect.

All whole brain contrasts were thresholded using random
field theory. The number of contiguous voxels required provid-
ing an alpha-value of 0.05 cluster-wise was estimated using
3dClustSim, based on an estimation of spatial smoothness.
Spatial smoothness was estimated to be 9.0mm × 9.2mm ×
8.0mm. Therefore, random field theory indicates that a cluster-
wise P-value of .05 can be achieved by using a voxel-wise
P-value of .01 and a minimal cluster-size of 80 voxels.

Multivoxel Pattern Analysis
Data for the MVPA analyses were left in native space. Deobliquing,
slice time correction, linear detrending, motion correction, and
co-registration were still applied to the data. MVPA searchlight
analysis was performed bywalking a spherewith a radius of 5 vox-
els through the brain images and then classifying each sphere
using a linear support vector machine (SVM, Princeton Multi-
Voxel Pattern Analysis (MVPA) Toolbox (https://code.google.com/
p/princeton-mvpa-toolbox/, last retrieved on 2 December 2015.),
Chang and Lin 2011). Functional responses within the searchlight
for each trial were classified based on Action or Material trials.
Seven runs of datawere used to train the classifier and then tested
against one run of data left out. This training and testing was
repeated until each run had been left out once (each run contained
2 blocks of each task, and each block 6 trials). The centroid voxel
of each sphere was assigned the classification accuracy of the
surrounding sphere. The temporal window of the time series

submitted to the classifier was chosen to maximize the hemo-
dynamic response function (for details of this searchlight process
see Nestor et al. 2011). The classifier’s ability to distinguish
between the 2 tasks at each voxel should reflect the encoding of
that information in the surrounding cortex.

Group level accuracy maps were made by warping the indi-
vidual accuracy maps to Talairach space, subtracting chance
accuracy from them (to normalize around zero), and then per-
forming single sample t-tests at each voxel against the null for
each voxel. Only voxels that had data from every participant
were tested in this way. The P-values from these t-tests were
then corrected for multiple comparisons using a false discovery
rate (FDR, Benjamini and Hochberg 1995) with a q < = 0.05 (P <
0.000376). The t-test maps were thresholded at the critical P
value identified by this FDR and a mask was created showing
voxels that had significant classification in the surrounding
sphere of voxels. This mask was used to select voxels in a
group level accuracy map created by averaging accuracy across
all participants in each voxel.

Behavioral Results
Behavioral data were first averaged across the 2 repetitions for
each participant, sound, and task. Data were discarded for trials
on which participants did not answer. We computed the accur-
acy of the response by averaging correct answers across the 6
sounds for each of the 8 different types of pair. Reaction times
were averaged across correct answers only.

The experiment had a full-factorial within-participant
design, with the Tasks and the Types of pairs as the within-
participant factors. The factor Task had 3 levels (Noise, Action,
Material). The factor Types of pairs had 8 levels (Table 1).

Response accuracy and response times were submitted to a
repeated-measure analysis of variance (ANOVA). Here and in
the following, all P-values are reported after using the Geisser-
Greenhouse correction for violation of sphericity when neces-
sary. Planned contrasts used Pillai’s test. The ANOVA showed a
significant effect of the Task on the accuracy of the responses
(F(2,44) = 4.00, P < 0.05), a significant effect of the Type of pair
(F(7,154) = 20.4, P < 0.01), and a significant interaction between
the 2 factors (F(14,308) = 7.39, P < 0.01).

Planned contrasts revealed that accuracy was best for the
Action task (98.2%) compared with the Material task (96.8%, P <
0.01) but was not significantly lower for the Noise task (97.1%, P
= 0.07). Accuracy was not significantly different between the
Material and Noise tasks (P = 0.54). Contrasts also showed that
accuracy was best for the pairs made of 2 identical sounds (SM–

SM and TP–TP: 99.8%) and for the pairs in which both material
and action were different (i.e., the sounds that were maximally
different SP–TM and SM–TP: 99.0%). Accuracy was worst for the
pairs in which only action (SM–TM and SP–TP: 93.3%) or mater-
ial (TM–TP and SM–SP: 97.6%) was different.

Reaction time was analyzed in a similar ANOVA, which
showed a significant effect of the Task on the reaction times

Table 2 Percentage of incorrect and missed trials for each experimental condition

Task/ type of pair TPTP TMTP SPTP SPTM SMTP SMTM SMSP SMSM Average

Noise 0.0 0.7 0.0 0.7 11.2 8.0 0.0 2.2 2.9
Action 0.0 0.4 1.1 6.2 2.2 1.8 1.1 1.1 1.7
Material 0.0 0.0 2.9 3.6 4.7 12.3 0.7 1.1 3.2
Average 0.0 0.4 1.3 3.5 6.0 7.4 0.6 1.4 2.6
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(F(2,44) = 35.6, P < 0.01), a significant effect of the Type of pair
(F(7,154) = 69.3, P < 0.01), and a significant interaction between
the 2 factors (F(14,308) = 14.0, P < 0.01). Planned contrasts
showed that participants responded significantly faster to the
Noise task (515ms) than to the Action task (676ms, P < 0.01)
and to the Material task (765ms, P < 0.01), and that they
responded significantly faster for the Action than the Material
task. RTs ranged from 337ms for the pair SM–SM to 954ms for
the pair SP–TP. Across tasks, RTs were faster on average for
the pairs of identical sounds (SM–SM and TP–TP: 487ms) and
significantly slower (with an alpha-value of 0.01) for the other
pairs (SM–TM and SP–TP: 760ms; TM–TP and SM–SP: 727ms,
SP–TM and SM–TP: 727ms).

Results: General Linear Model Analysis of fMRI
Data (GLM)
For the fMRI BOLD response data, the main effect of both factors
(attentional Task and Type of Pair) resulted in significant differ-
ences of activity in several cortical areas. Interaction between
the 2 factors did not produce any significantly activated region.
Next paragraphs therefore report the effects of each factor sep-
arately. Table 3 reports the stereotactic coordinates of the
regions significantly activated in the different analyses.

Effects of the Different Types of Pairs

The 8 different Types of pairs possess distinct acoustic charac-
teristics: tapping sounds are shorter and have a much sharper
onset than the scraping sounds, and metal sounds have a longer
decay and more energy in high frequencies than plastic sounds.
We therefore expected that the different Types of pairs would
modulate activity in early auditory areas. This was confirmed by
the results of the GLM analysis. Table 3 shows that cortical
activity elicited by the different Types of pairs peaked in both
Heschl’s gyri (HG) and spread to surrounding regions in STG and
the thalamus. Significant activity in the thalamus may reflect
earlier auditory processing and relaying. The nonsignificant
interaction between the Types of pairs and the Task suggests
that this activity in early perceptual regions was not modulated
by attention.

Effects of the Attentional Tasks

Altogether, the different attentional tasks resulted in signifi-
cant changes of the BOLD response in several cortical regions
reported in Table 3. The main effect of the Tasks first appears
in a large bilateral cluster encompassing bilateral HG, sur-
rounding area in STG, and spreading to inferior frontal gyri and
superior frontal gyri (b-aSFG), a bilateral cluster at the junction
of the inferior precuneus and posterior cingulate gyri (b-iPC/
pCG), a bilateral cluster located on the anterior portion of the
cingulate gyri (b-aCG), and 4 other areas in left hemisphere,
centered on posterior inferior frontal regions (l-IF), and the
medial and posterior part of the left superior frontal gyrus (l-
MedSFG), on the IPS (l-IPS), and straddling through the junction
of the temporal and parietal lobes (l-TPj): posterior parts of STG
and MTG, supramarginal, angular gyri, and anterior part of the
superior occipital gyrus.

Planned orthogonal contrasts between the 3 tasks (A vs. M
and N vs. (A + M)/2) detail this effect (see the top panel of Fig. 1).
First, the contrast between the Noise and the 2 meaningful tasks
(i.e., N vs. (A + M)/2) reveals that the Noise task elicited higher

activation than the meaningful tasks in b-HG, b-PC/pCG, and
l-TPj. The 2 meaningful tasks (A and M) elicited higher activation
than the Noise task in the 3 main areas centered on l-IFS, l-IPS, b-
MedSFG, as well as b-aCG. Next, a contrast between tasks A and
M showed that the Material task resulted in higher activation
than the Action task in an area located in the posterior part of the
left inferior frontal sulcus (l-IFS), extending to the junction with
the inferior part of the precentral sulcus, which is part of the fron-
toparietal network of action sound identification (see the middle
panel of Fig. 1). The Material task also elicited higher activation in
a bilateral area located in the inferior part of the occipital lobe (b-
IO). This area overlaps with the most posterior parts of the infer-
ior occipital, middle occipital, lingual, and fusiform gyri, and the
cunei (i.e., visual areas). The Action task resulted in higher activa-
tion than the Material task in a cluster straddling the posterior
parts of STG and MTG, and angular and supramarginal gyri (i.e.,
the junction of the temporal and parietal lobes l-TPj, part of the
frontoparietal network of action representation), and a bilateral
area in the anterior section of the superior and medial frontal gyri
(b-aMedSFG).

Figure 2 represents the BOLD response averaged across par-
ticipants, blocks, and the voxels of the 4 significant clusters in
the A versus M contrast. This figure shows a striking difference
between the different clusters. On the one hand, the BOLD
response in l-IFS and b-IO clusters is clearly synchronized with
the timing of the stimuli, and the amplitude of the response is
greater for the Material task than for the Action and Noise
tasks, as highlighted by the GLM analysis. On the other hand,
the response in MedSFG and l-TPj clusters is also synchronized
with the stimulus timing, but in antiphase with the response of
the 2 former clusters. Whereas the peak of the BOLD response
occurs 3–4 TRs (6–8 s) after the stimulus onset for the l-IFS and
b-IO clusters (i.e., consistent with the canonical HRF), the
response for the MedSFG and l-TPJ peaks earlier in the trial (i.e.,
1–2 TRs after stimulus onset) and decreases between 3 and 5 s
after stimulus onset (i.e., when it increases in the other clus-
ters). This antiphase is reflected in the negative coefficients
applied to the canonical HRF when modeling the BOLD
response (see the IRFs on the right hand side of Fig. 2). Such a
negative BOLD response (NBR) has been reported in several
studies and interpreted as reflecting deactivation from the
brain’s default mode (Shmuel et al. 2002; Raichle 2015). In such
a framework, the significant GLM would be interpreted as
resulting from a greater deactivation in the Material task,
rather than a greater activation in the Action task. Such an
interpretation is consistent with the fact that l-TPj and medial
SFG has considered as important components of the brain’s
default network (see the general discussion below).

In addition, correlation analyses across the 8 types of pairs
and the 3 tasks (i.e., 24 data points) showed that the percentage
of signal change (compared with baseline) in l-TPj and medial
SFG was negatively correlated with the reaction times (r(22) =
22120.68, P < 0.01 for both clusters) across all participants. This
further confirms that a decrease of activity in these regions
was modulated by task demand. In comparison, percent
change was positively correlated with reaction times in l-IFS
(r(22) = 0.59, P < 0.01), and not significantly correlated with reac-
tion times in the bilateral IO clusters (left: r(22) = 0.25; right:
r(22) = 0.15) (To further investigate the influence of the reaction
times, we conducted a linear mixed-effect analysis of the data,
with the 2 experiment factors as within-participant factors, the
reaction times as a random covariate, and the participants as a
random effect, using the method proposed by Chen et al. 2013
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(The analysis is reported in Supplementary material.) Including
the reaction times as a covariate had very little influence on
the clusters discussed here: the size of the b-IO, l-IFS, and l-TPj
clusters was reduced by about 5%, and the location of the cen-
ter of gravity varied by no more than 5mm. This rules out the
possibility that the results were only driven by the significant
differences of reaction times between the tasks.).

Effects of the Instruction Changes

The BOLD response of the IO clusters has another notable aspect:
there is a peak at the beginning of the block, when no stimulus
is presented, but the instructions displayed on the monitor

change from one task to another. This suggests that the signifi-
cant differences in activation found in the occipital regions
between the 2 meaningful tasks may be partially accounted for
by the differences between their visually presented instructions
and fixation symbols. The second, separate GLM analysis there-
fore focused only on the changes of visual display at the begin-
ning of each block (Instruction Changes) to disentangle potential
visual effects from auditory processing effects.

Table 3 reports the results of the main effect of this GLM
analysis with the Instruction Changes as the experimental fac-
tor (thus focusing on the initial 10 s of each block). These
instruction changes resulted in significant differences of activ-
ity in the ventral part of the occipital lobe, including parts of

Table 3 Stereotactic coordinates of the clusters found in the GLM analysis of the imaging data. Clusters with the same shortcuts overlap

Effect Brain region label Coordinates
(MNI)

Number of
voxels

BA Shortcut

Type of pair Right Heschl’s gyrus, STG 47, −19, 8 677 41, 22 b-HG
Left Heschl’s gyrus −43 −17, 5 596 41, 22
Thalamus 8, −56, −4 161 –

Main effect of attention
condition

Bilateral Heschl’s gyri, anterior superior
and middle temporal gyri, anterior
superior frontal and medial gyri

−43, −20, 8 5621 41, 22 b-HG, b-aS/MTG, b-aSFG, b-aSFG,
b-MedFG

Bilateral precuneus, posterior cingulate
gyrus

−10, −52, 32 597 31 b-iPC/pCG

Left angular, supramarginal, and superior
occipital gyri

−43, −80, 27 497 19, 39 l-Ang/Supr/SO

Bilateral anterior cingulate gyri −1, −4, 23 234 b-aCG
Left middle frontal gyrus, inferior frontal

gyrus, precentral gyrus
−43, 13, 32 856 9, 44 l-IF

Left supramarginal gyrus/intraparietal
sulcus

−28, −49, 25 342 l-IPS

Left posterior part of medial frontal gyrus −4, 9, 55 143 6 l-pMedFG
Right lingual gyrus 20, −94, −7 234 17 b-IO
Left lingual gyrus −16, −90, −10 226 17
Left fusiform gyrus −46, −49, −13 80 37 l-fusi

N > (A + M)/2 Bilateral Heschl’s gyrus, connected
through inferior frontal gyrus, and
extending to superior frontal and
medial gyri

−43, −19, 8 5220 41, 22 b-HG, bSFG

Bilateral Precuneus, posterior cingulate
gyrus

−10, −52, 32 593 31 b-PC, bCG

Left posterior parts of superior and
middle temporal, angular and
suprarmarginal gyri, as well as anterior
parts of superior occipital gyrus

−37, −83, 24 401 39 l-TPj

(A + M)/2 > N Left middle frontal gyrus, Inferior frontal
gyrus, Precentral gyrus

−46, 22, 29 789 9, 46 l-IF

Bilateral ant. cingulate gyrus 6, −2, 24 387 24 b-aG
Left Supramarginal gyrus/Intraparietal

sulcus
−28, −49, 35 320 l-IPS

Left posterior part of medial frontal gyrus −4, 9, 55 105 6 l-pMedFG
M > A Bilateral inferior/middle/lingual/fusiform

occipital gyri
14, −97, 4 635 17, 18 b-IO

Left post. Inferior frontal sulcus −46, 26, 23 113 44 l-IFS
A > M Left posterior parts of superior and

middle temporal, angular and
suprarmarginal gyri. Temporoparietal
junction. Also includes the post. part of
the left middle temporal gyrus

−49, −65, 35 177 39 l-TPj

Bilateral anterior portion of Superior/
Medial FG

14, 49, 43 81 9 b-aMedSFG

Instruction Change Bilateral fusiform gyrus 29, −68, −16 125 19 b-FG
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lingual and fusiform gyri (i.e., ventral visual pathway involved
in the processing identity of visually presented objects). The
insert in the middle panel of Figure 1 magnifies the overlap
between the 2 analyses (M > A and main effect of Instruction
Changes). This shows that there is actually very little overlap
between the 2 effects and suggest that the greater activation
found in occipital regions for the (auditory) material task genu-
inely reflects the effect of the auditory stimuli and not the dif-
ferences of visual instructions between the tasks.

Results: MVPA of MRI data (MVPA)
A whole brain MVPA searchlight was conducted on the full
dataset to find regions classifying Material versus Action tasks.
When the resulting t-statistic maps were thresholded we
revealed areas that had spatial patterns of activity supporting
the classification of the 2 tasks (q < 0.05). A total of 9 clusters of
voxels supporting classification were identified with more than
10 significant voxels (see Table 4 and the bottom of Fig. 1).

Figure 1. Top panel: Results of the A + M − 2N contrast in the GLM analysis. Regions in yellow correspond to A + M > 2N, regions in blue correspond to 2N > A + M.

Middle panel: results of the A – M contrast in the GLM analysis. Regions in yellow correspond to A > M. Regions in blue correspond to M > A. Bottom panel: results of

the MVPA (A vs. M). SFG = superior frontal gyrus. IFS = inferior frontal sulcus. PreCS = precentral sulcus. SupMG = supramarginal gyrus. STG = superior temporal

gyrus. MTG = middle temporal gyrus. LingG = lingual gyrus. FusiG = fusiform gyrus. b-aSFG, l-IF, l-TPj, and b-IO are the acronyms used in Table 3.
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Reported coordinates correspond to the peak of the clusters in
Talairach space.

The largest significant cluster found by the MVPA is located
in the inferior part of right occipital lobe, straddling middle
occipital, inferior occipital, lingual and fusiform gyri (r-I/MOG).
Another large area comprises 2 clusters in the left frontal lobe,
including posterior portions of the middle frontal gyrus and the
middle section of the precentral gyrus (l-pMFG). A smaller area
in the right hemisphere includes 2 smaller clusters in the mid-
dle and inferior frontal sulci (r-aMFS and r-IFS). There are also 2
clusters in the left temporal lobe, straddling l-TPj and middle
and inferior temporal gyri (l-pM/ITG). Other significant clusters
are located in the right hemisphere, in the posterior part of
superior temporal sulcus (r-pSTS) and the anterior part of the
superior frontal gyrus (r-aSFG).

Figure 3 overlays the results of the MVPA, 2 orthogonal con-
trasts in the GLM analysis on attentional tasks ((A + M)/2 > N
and A vs. M), and the overlap of the 2 analyses with a color
code. The description and location of the overlapping areas are
also reported in Table 4. The A vs. M contrast and the MVPA
overlap in 3 areas. One such area is located at the l-TPj, where
the GLM found more deactivation for the Material than the
Action tasks. Another area is located in the inferior part of the
right occipital lobe, on the lingual gyrus (r-LG), and another one
on the right inferior occipital gyrus (r-IOG). Finally, the clusters

found by the 2 analyses on medial part of the superior frontal
gyrus (aSFG) are also very close (more deactivation for the
Material task). The conjunction of the (A + M)/2 > N contrast
and the MVPA highlights a region located on the inferior part of
the left precentral gyrus and the posterior middle frontal gyrus
(l-PCG). Interestingly, this region is very close to a region found
by the GLM analysis where the Material task results in higher
activations than the Action task (l-IFS). The conjunction also
reveals a much smaller area in the right inferior frontal sulcus.

Overall, the comparison of the MVPA and GLM analyses con-
firm that the 4 clusters previously identified (temporoparietal
junction, left inferior frontal, medial superior frontal gyrus, and
occipital regions) play an important role when participants are
attending to the material and the action producing the sounds.

Again, the classification of 2 tasks in inferior occipital
regions could result from activity in visual areas processing
shape and color elicited by the differences of visual instructions
between the 2 tasks. To disentangle these effects, the bottom
right part of Figure 3 represents the overlap of the results of the
MVPA and the GLM analyses of the Instruction Changes. There
is clear overlap of the 2 analyses in the right lingual and fusi-
form gyri, indicating that the successful classification of the 2
tasks based on patterns of activity in these regions resulted
from the different visual displays. However, there is no overlap
between the 2 analyses for a cluster found on the right inferior
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Figure 2. Left panel: BOLD response (in percent change) averaged across participants, blocks, and the voxels of the 4 clusters found in the A versus M contrast. The

first 5 TRs are silent and correspond to the moment where the instructions are changed. The next TRs correspond to the 6 trials of each block. The right panel repre-

sents the average Impulse Response Function found in the GLM analysis for the stimulus trials in each task.
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Figure 3. Conjunction of the results of the GLM analysis and the MVPA. Cluster names are described in Table 4. The overlap between the 2 analyses is represented by

different shades.

Table 4. Stereotactic coordinates of the clusters found in the MVPA analysis, and the conjunction of the GLM contrasts (A vs. M) and the
MVPA.

Effect Brain region label Coordinates
(MNI)

Number of
voxels

BA Shortcut

MVPA: action versus material Right inferior/middle occipital gyrus, lingual
and fusiform gyri

29, −81, −13 212 17, 18 r-I/MOG

Left posterior part of middle frontal gyrus
straddling to middle section of precentral
gyrus

−34, 15, 49 65 6 l-pMFG

Left posterior part of middle frontal gyrus −40, 12, 52 56 6 l-pMFG
Right anterior part of inferior frontal sulcus/
gyrus

38, 45, 11 56 46 r-aIFS

Right anterior part of middle frontal sulcus 38, 31, 33 22 9, 44 r-aMFS
Left anterior part of superior frontal gyrus −9, 62, 22 56 10 l-aSFG
Left posterior part of inferior and middle
temporal gyri

−56, −54, −7 40 37 l-pM/ITG

Left posterior parts of superior and middle
temporal gyri

−47, −67, 21 29 39 l-pS/MTG

Right posterior part of superior temporal
sulcus

51, −57, 9 36 39 r-pSTS

Conjunction (M + A)/2 > N and MVPA Left precentral gyrus and posterior part of
middle frontal gyrus

−46, 0, 38 16 7 l-PreCG

Right anterior inferior frontal sulcus 38, 29, 30 4 9, 44 r-aIFS
Conjunction: (M > A or A > M) and MVPA Right lingual gyrus, inferior occipital gyrus 32, −81, −20 39 18, 19 r-LG

Right middle occipital gyrus 29, −91, 4 4 18, 19 r-MOG
Left posterior parts of superior and middle
temporal gyri, temporoparietal junction

−49, −64, 18 22 39 l-TPj

For the conjunction, stereotactic coordinates correspond to the center of mass of the overlapping areas.
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occipital gyrus. This suggests that more superior regions in the
right occipital lobe were actually responding differently to audi-
tory information in the 2 tasks.

General Discussion
Participants made only a few errors across all tasks and types of
pairs, confirming that they were actively focusing on the task,
and that the sounds were easily discriminable. In more detail, the
slightly longer reaction times and poorer accuracy within the
Material task suggests that discriminating the materials involved
deeper processing of the stimuli than discriminating the actions.
Another possibility for the longer reaction times is that the acous-
tic cues specifying the material are usually located at the offset of
the sounds (spectrotemporal decay) whereas the acoustic cues
specifying are usually found at the onset of the sounds. The
different Types of Pairs also influenced accuracy in the
Material task (the task was easier when the sounds were iden-
tical or maximally different), but not in the Action task. This
further suggests that the Material Task was slightly more
challenging for the listeners. This was echoed by the com-
ments of several participants.

The results of the brain imaging analyses showed that
attending to material activated a network of areas involved in
accessing semantic, motor, and visual representations, and
probably caused a deactivation of the brain’s default network.
In contrast, attending to action did not increase activity in any
specific cortical area. The following paragraphs discuss these
observations.

Task Effect in the Action-Sound Network

The first and somewhat expected result is that the meaningful
tasks overall (A and M) elicited more activation than the Noise
task in the left frontoparietal action-sound network (centered on
the left-IPS (l-IPS) and encompassing a large part of the left
Inferior Frontal lobe l-IF, see Lewis 2006). Importantly, the Action
and Material Tasks activated most of this network equivalently.
We therefore suggest that these regions are for the most part not
under the control of focused auditory attention and may identify
both basic properties of sound objects even when listeners focus
on only one property. In particular, the left intraparietal sulcus
(i.e., dorsal pathway, integration of sensory and motor represen-
tations) was activated equivalently by both meaningful tasks
(whereas one of our prior expectation was that identifying action
would activate more strongly this area). This is consistent with
an interpretation of the dorsal pathway as processing auditory
stimuli to guide actions (in particular for visual orientation,
Arnott and Alain 2011): the action task required the listeners to
identify actions, not to perform an action.

Contrast analyses offered more insights into the effect of the
meaningful tasks. It revealed significant differences in activation
between the Action and Material tasks in 4 cortical areas: the
medial aspect of the Superior Frontal Gyrus (MedSFG), the left
temporoparietal junction (l-TPj: posterior part of the left superior
and middle temporal gyri, IPL), the left inferior frontal sulcus
(l-IFS), and the bilateral inferior occipital lobes (b-IO).

Material Task Targets the Default Brain Mode

Analysis of the time course of the BOLD signals showed that the
significant differences found in MedSFG and l-TPj actually
resulted from negative BOLD responses: responses were in anti-
phase with stimulus timing and with the BOLD response in other

brain areas. One interpretation is that the phase differences
were simply caused by small differences in the timing of the
BOLD response in different parts of the brain. However, the near-
perfect antiphase we observed is striking and suggests instead
that focusing attention to the different properties of the sound
sources actually caused deactivation of these regions (i.e.,
decrease of activity from baseline). Decreased cerebral blood flow
and negative bold responses have been previously reported in
several PET and fMRI studies (Shulman et al. 1997; Raichle et al.
2001; Shmuel et al. 2002). Deactivation is typically found in med-
ial prefrontal regions, posterior cingulates, and the temporopar-
ietal junction (BA 39), and occurs in variety of nonself-referential
goal-directed tasks when compared with a resting state baseline.
The location of the 2 regions highlighted by our GLM analysis
(medial SFG and temporoparietal junction) is therefore consist-
ent with these regions, identified in the literature as the “default
brain mode.” It has been shown to correspond to neural inhib-
ition (Wade 2002; Shmuel et al. 2002), and these results have
been interpreted in some cases as cross-modal inhibition of sen-
sory areas (Laurienti 2004; Amedi et al. 2005), or as the existence
of an organized, baseline default mode of brain function that is
suspended during specific goal-directed behaviors (Raichle 2015).
In this context, we interpret the significant contrast (Action >
Material) as resulting from a greater deactivation in the Material
task, rather than from a greater activation in the Action task.
This is consistent with the idea that the Material task was more
demanding than the Action task as it required a larger inhibition
of the brain default mode; this was confirmed by the significant
correlation between the amount of deactivation and the reaction
times. However, this interpretation is speculative because the
experimental design did not include resting state periods specif-
ically designed to assess baseline activity. It thus difficult to
exclude the possibility of artifacts such as those caused by global
signal normalization (Laurienti 2004).

In addition, the results of the MVPA showed that it is pos-
sible to predict the M and A tasks from the patterns of activity
in l-SFG and l-TPJ, in areas close or overlapping the regions
highlighted by the GLM analysis. This confirms that these
regions are consistently responding to the 2 meaningful tasks
in 2 different ways and again suggests that their activity is sen-
sitive to the focus of attention and to task demand.

Discriminating Material Recruits Semantic and Motor
Association Areas

In contrast, the significant differences in l-IFS were caused by a
greater activation elicited by the Material task, with activity posi-
tively correlated with the task demand (as indexed by the differ-
ences in reaction times, despite very high overall accuracy). Both
meaningful tasks resulted in higher activation than the Noise
task in a large region centered on l-IFS. This contrast thus shows
that the center of this region (the sulcus proper) is more activated
by the Material task and higher task demand. The l-IFS corre-
sponds to the projection of the ventral pathway of auditory pro-
cessing (object identification), also belongs to the frontoparietal
action-sound network, and elaborates a primary mapping
between prerepresentational stages of auditory analyses and
semantic representations (Lewis 2006). Whereas identifying both
properties of sound sources involves access to semantic represen-
tations, the higher activation of IFS therefore suggest that identi-
fying material relied more heavily on these representations.

Because of the correlations between reaction times and activa-
tion, we explored whether the significant differences in activation
between material and action tasks were driven by the reaction
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time differences. However, adding the reaction times as a random
covariate in the analysis had very little influence on the activation
of this region (the analysis is reported in Supplementary
material). The neural differences seen between tasks are not
explained by difficulty (as indexed by reaction times), which
allows us to conclude that they reflect different cognitive pro-
cesses involved in performing the 2 tasks.

The MVPA identified a region similarly located in the poster-
ior part of the left posterior frontal lobe, overlapping the results
of the GLM analysis (A + M > 2N). More precisely, the 2 analyses
overlapped on the ventral precentral gyrus, a region correspond-
ing to the VPMC. VPMC receives projections of both ventral and
dorsal pathways and is posited to be the human equivalent to
audiovisual mirror neurons (Aglioti and Pazzaglia 2010), mapping
sensory inputs with motor programs. Altogether, these results
suggest a functional organization of the left inferior frontal
region involved in sound source identification, with the inferior
frontal sulcus mapping sensory inputs to semantic representa-
tions and being sensitive to task demand (activity in VMPC was
correlated with reaction times), and VPMC (specifically mapping
sensory inputs to motor representations) under the control of
the focus of attention (both analyses concluded that focusing
attention modulated activity in this area).

Discriminating Material Recruits Bilateral Visual Areas

The results of both analyses also converged in occipital regions.
The Material task elicited significantly more (positive) activa-
tion than the Action task in bilateral occipital region, but this
activation was not correlated with task demand. Activity driven
by auditory stimuli in occipital regions (usually considered as
visual areas) is more surprising (though not unique) and should
therefore be considered with care. The MVPA also successfully
predicted the meaningful tasks based on the patterns of activ-
ity in occipital regions. Comparisons with the different GLM
analyses (effects of visual display and effects of experiment fac-
tors) revealed that some of these regions located on lingual and
fusiform gyri were actually reflecting the changes of visual dis-
plays between the 2 tasks (color and shape of the fixation sym-
bols), consistent with the role of the ventral visual pathway.
More interestingly, these comparisons also singled out a region
located on the right inferior and middle occipital gyri whose
patterns of activity could successfully classify the 2 meaningful
tasks and was not driven by the changes of visual instructions.
This suggests that focusing auditory attention on the material
of the objects causing the sounds actually recruited visual areas
previously found to process material identification (Cant and
Goodale 2007). The result of the MVPA is therefore consistent
with the findings of Vetter et al. (2014) who showed that the
classification of sound categories can be successfully predicted
from the cortical activity in V1, V2, and V3 (see also Lehet et al.
submitted). One interpretation is that identifying material
required access to visual representations or memories. Such an
idea is consistent with the results of Merabet et al. (2004), who
hypothesized that the visual cortex is well suited for precise
spatial judgments, even for nonvisual stimuli.

Discriminating Action Did not Uniquely Activate the
Human Motion Complex (p-STS/MTG)

Finally, it is important to note that neither analysis found any
significant results in some regions where we expected to see
them. For instance, changing the focus of attention was not
reflected in primary auditory regions (areas surrounding STG),

which would have been the case if focusing attention toward
material or action had modulated the processing of the corre-
sponding basic acoustic properties. In addition, we expected
that focusing attention to the actions that caused the sounds
would elicit activity in regions close to the p-STS/MTG complex,
which has been shown to be sensitive to human motion in
both the visual and auditory modalities. A detailed analysis of
the A > M contrast shows that the l-TPj cluster actually
includes the junction of the posterior MTG and the anterior
middle occipital gyrus, and thus corresponds pMTG. This area
consists of a number of voxels that would have not survived
thresholding if they had not been connected to the TPj cluster.
One possible interpretation is that our stimuli evoked human
motion only moderately and thus that the statistical power of
our whole-brain analyses was not sufficient to reveal small
changes of activity in this area.

Conclusion
In conclusion, the results of this study are in line with our pre-
vious findings (Lemaitre and Heller 2012, 2013) that suggest
that auditory perception is better suited to comprehend the
actions creating sounds in the listeners’ environment than the
properties of the objects radiating these sounds. These results
are consistent with embodied cognition theories (Barsalou
2008) and ideomotor theories (Shin et al. 2010) specifying that
sensory stimuli are stored together with the motor representa-
tions of the actions causing them. However, this research did
not specifically test between them. The results indicate that
recovering action is an inherent part of listening to sounds, but
it does not suggest that a motor simulation is the exclusive
means by which this is done. More importantly, these results
elucidate the neural bases of this behavior: The most striking
result is that shifting the listeners’ attention toward the mater-
ial resulted in greater activation in a network of areas involved
in accessing semantic and visual representations, and probably
caused a greater deactivation of the brain’s default network
(when compared with shifting their attention to the action).
Together with the behavioral results, this provides evidence
that identifying the action causing the sounds is a default way
of listening to sounds, whereas identifying the material
requires a deeper processing, access to long-term knowledge,
and access to visual properties of the objects potentially caus-
ing the sounds. Future work using other types of sounds will be
useful to confirm whether the cortical networks found in other
studies on sound identification depend on the properties eli-
cited by the experimental task.

Supplementary Material
Supplementary material are available at Cerebral Cortex online.
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