91 research outputs found
Pulsatile Fluid Shear in Bone Remodeling
The objective of this investigation was to elucidate the sensitivity to transients in fluid shear stress in bone remodeling. Bone remodeling is clearly a function of the local mechanical environment which includes interstitial fluid flow. Traditionally, load-induced remodeling has been associated with low frequency (1-2 Hz) signals attributed to normal locomotion. McLeod and Rubin, however, demonstrated in vivo remodeling events associated with high frequency (15-30 Hz) loading. Likewise, other in vivo studies demonstrated that slowly applied strains did not trigger remodeling events. We therefore hypothesized that the mechanosensitive pathways which control bone maintenance and remodeling are differentially sensitive to varying rates of applied fluid shear stress
Exogenous nitric oxide decreases brain vascular inflammation, leakage and venular resistance during Plasmodium berghei ANKA infection in mice
<p>Abstract</p> <p>Background</p> <p>Cerebral malaria (CM) is a lethal complication of Plasmodium falciparum infections. In the Plasmodium berghei ANKA (PbA) murine model, CM is associated with marked brain inflammation, increased expression of endothelial cell adhesion molecules and leukocyte and platelet accumulation in brain vessels, causing vascular occlusion and decreased blood flow, damaging the endothelium and leading to blood-brain barrier breakdown, leakage and hemorrhages. Exogenous nitric oxide (NO) administration largely prevents the syndrome. Here we evaluated whether the mechanism of action of NO in preventing murine CM is related to its anti-inflammatory properties and to protection of the endothelium.</p> <p>Methods</p> <p>C57Bl/6 mice infected with PbA were treated twice a day with saline or dipropylenetriamineNONOate (DPTA-NO). Endothelial cell adhesion molecule (ICAM-1, VCAM, E- and P-selectin) expression in brain tissue on day 6 of infection was assessed in both groups by western blot. For intravital microscopy studies, DPTA-NO-treated and saline-treated mice with a previously implanted closed cranial window were injected with albumin-FITC, anti-CD45-TxR and anti-CD41-FITC antibodies on day 6 of infection for quantification of albumin leakage, leukocyte and platelet adherence in pial vessels.</p> <p>Results</p> <p>PbA-infected mice treated with the NO-donor DPTA-NO showed decreased expression of ICAM-1 and P-selectin, but not VCAM-1, in the brain, compared to saline-treated mice. DPTA-NO treatment also decreased the number of adherent leukocytes and platelets in pial vessels, particularly in venules 30-50 μm in diameter, decreased inflammatory vascular resistance and prevented the occurrence of arteriolar and venular albumin leakage observed in saline-treated PbA-infected mice, as assessed by intravital microscopy.</p> <p>Conclusions</p> <p>These results indicate that the protective effect of exogenous NO on murine CM is associated with decreased brain vascular expression of inflammatory markers resulting in attenuated endothelial junction damage and facilitating blood flow.</p
GDF15 promotes weight loss by enhancing energy expenditure in muscle
Funding Information: We thank R. Seeley for sharing GFRAL-null mice; B. Lowell for sharing β-less mice; and J. Wu for shipping β-less mice to us. G.R.S. was supported by a Diabetes Canada Investigator Award (DI-5-17-5302-GS), a Canadian Institutes of Health Research Foundation Grant (201709FDN-CEBA-116200), a Tier 1 Canada Research Chair in Metabolic Diseases and a J. Bruce Duncan Endowed Chair in Metabolic Diseases; D.W. by Fellowship Grants from the McMaster Institute for Research on Aging (MIRA) at McMaster University; S.R. by a postdoctoral fellowship supported by MITACS and Novo Nordisk; L.K.T. by a CIHR Post-Doctoral Fellowship Award and Michael DeGroote Fellowship Award in Basic Biomedical Science; E.M.D. by a Vanier Canada Graduate Scholarship; G.P.H. by the Natural Sciences and Engineering Research Council of Canada (NSERC: 400362); G.J.D. and S.M.F. by NSERC-CGSM scholarships; L.D. by the Fonds de Recherche du Québec-Santé doctoral training award; D.P.B. by the GSK Chair in Diabetes of Université de Sherbrooke and a FRQS J1 salary award. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by the NCI, NHGRI, NHLBI, NIDA, NIMH and NINDS. Funding Information: S.B.J. and R.E.K. are employees of Novo Nordisk, a pharmaceutical company producing and selling medicine for the treatment of diabetes and obesity. G.R.S. is a co-founder and shareholder of Espervita Therapeutics. McMaster University has received funding from Espervita Therapeutics, Esperion Therapeutics, Poxel Pharmaceuticals and Nestle for research conducted in the laboratory of G.R.S. S.R. is supported by a MITACS postdoctoral fellowship sponsored by Novo Nordisk. H.C.G. holds the McMaster-Sanofi Population Health Institute Chair in Diabetes Research and Care. G.R.S., G.P. and H.C.G. are inventors listed on a patent for identifying GDF15 as a biomarker for metformin. G.R.S. has received consulting/speaking fees from Astra Zeneca, Eli Lilly, Esperion Therapeutics, Merck, Poxel Pharmaceuticals and Cambrian Biosciences. The other authors declare no competing interests. Publisher Copyright: © 2023, The Author(s).Peer reviewedPublisher PD
Flow-Dependent Mass Transfer May Trigger Endothelial Signaling Cascades
It is well known that fluid mechanical forces directly impact endothelial signaling pathways. But while this general observation is clear, less apparent are the underlying mechanisms that initiate these critical signaling processes. This is because fluid mechanical forces can offer a direct mechanical input to possible mechanotransducers as well as alter critical mass transport characteristics (i.e., concentration gradients) of a host of chemical stimuli present in the blood stream. However, it has recently been accepted that mechanotransduction (direct mechanical force input), and not mass transfer, is the fundamental mechanism for many hemodynamic force-modulated endothelial signaling pathways and their downstream gene products. This conclusion has been largely based, indirectly, on accepted criteria that correlate signaling behavior and shear rate and shear stress, relative to changes in viscosity. However, in this work, we investigate the negative control for these criteria. Here we computationally and experimentally subject mass-transfer limited systems, independent of mechanotransduction, to the purported criteria. The results showed that the negative control (mass-transfer limited system) produced the same trends that have been used to identify mechanotransduction-dominant systems. Thus, the widely used viscosity-related shear stress and shear rate criteria are insufficient in determining mechanotransduction-dominant systems. Thus, research should continue to consider the importance of mass transfer in triggering signaling cascades
Skeletal Adaptation to Intramedullary Pressure-Induced Interstitial Fluid Flow Is Enhanced in Mice Subjected to Targeted Osteocyte Ablation
Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF
AI is a viable alternative to high throughput screening: a 318-target study
: High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
- …