402 research outputs found

    The role of risk perception and affect in predicting support for conservation policy under rapid ecosystem change

    Get PDF
    Conservation conflicts are damaging for humans and wildlife, with differences in people's objectives fuelling challenges of managing complex, dynamic systems. We investigate the relative importance of economic, psychological (affect, trust and risk perception) and ecological factors in determining farmers' management preferences, using Greenland barnacle geese (Branta leucopsis) on Islay, Scotland, as a case study. Barnacle geese reduce agricultural productivity on Islay, negatively impacting household economies. Since 1992, farmers have received partial compensation but a new culling scheme has escalated conflict between conservation and agricultural interests. Using a questionnaire, we collected data from 75% of the farmers receiving goose payments. We found that affect was a strong driver of both risk perception and management preferences. However, we revealed complexity in these relationships, with trust and economic factors also influencing decision‐making. Psychological and economic factors surrounding wildlife management must be understood if we are to achieve conservation objectives in human dominated landscapes

    The United Nations\u27 Effort to Establish a Right of the Peoples to Peace

    Get PDF

    Functional brain networks involved in gaze and emotional processing

    Get PDF
    Eye-gaze direction plays a fundamental role in the perception of facial features and particularly the processing of emotional facial expressions. Yet, the neural underpinnings of the integration of eye gaze and emotional facial cues are not well understood. The primary aim of this study was to delineate the functional networks that subserve the recognition of emotional expressions as a function of eye gaze. Participants were asked to identify happy, angry, or neutral faces, displayed with direct or averted gaze, while their neural responses were measured with fMRI. The results showed that recognition of happy expressions, irrespective of eye-gaze direction, engaged the critical nodes of the default mode network. Recognition of angry faces, on the other hand, was gaze-dependent, engaging the critical nodes of the salience network when presented with direct gaze, but fronto-parietal areas when presented with averted gaze. Functional connectivity analysis further showed gaze-dependent engagement of a large-scale network connected to bilateral amygdala during the recognition of angry expressions. This study provides important insights into the functional connectivity between the amygdala and other critical social-cognitive brain nodes, which are essential in processing of ambiguous, potentially threatening social signals. These findings have implications for psychiatric disorders, such as post-traumatic stress disorder, which are characterized by aberrant limbic connectivity

    Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae

    Get PDF
    Biofilm formation is an important virulence trait of many bacterial pathogens. It has been reported in the literature that only two of the reference strains of the swine pathogen Actinobacillus pleuropneumoniae, representing serotypes 5b and 11, were able to form biofilm in vitro. In this study, we compared biofilm formation by the serotype 1 reference strain S4074 of A. pleuropneumoniae grown in five different culture media. We observed that strain S4074 of A. pleuropneumoniae is able to form biofilms after growth in one of the culture conditions tested brain heart infusion (BHI medium, supplier B). Confocal laser scanning microscopy using a fluorescent probe specific to the poly-N-acetylglucosamine (PGA) polysaccharide further confirmed biofilm formation. In accordance, biofilm formation was susceptible to dispersin B, a PGA hydrolase. Transcriptional profiles of A. pleuropneumoniae S4074 following growth in BHI-B, which allowed a robust biofilm formation, and in BHI-A, in which only a slight biofilm formation was observed, were compared. Genes such as tadC, tadD, genes with homology to autotransporter adhesins as well as genes pgaABC involved in PGA biosynthesis and genes involved in zinc transport were up-regulated after growth in BHI-B. Interestingly, biofilm formation was inhibited by zinc, which was found to be more present in BHI-A (no or slight biofilm) than in BHI-B. We also observed biofilm formation in reference strains representing serotypes 3, 4, 5a, 12 and 14 as well as in 20 of the 37 fresh field isolates tested. Our data indicate that A. pleuropneumoniae has the ability to form biofilms under appropriate growth conditions and transition from a biofilm-positive to a biofilm-negative phenotype was reversible

    A molecular communication channel consisting of a single reversible chain of hydrogen bonds in a conformationally flexible oligomer

    Get PDF
    Communication of information through the global switching of conformation in synthetic molecules has hitherto entailed the inversion of chirality. Here, we report a class of oligomer through which information may be communicated through a global reversal of polarity. Ethylene-bridged oligoureas are constitutionally symmetrical, conformationally flexible molecules organized by a single chain of hydrogen bonds running the full length of the oligomer. NMR reveals that this hydrogen-bonded chain may undergo a coherent reversal of directionality. The directional uniformity of the hydrogen-bond chain allows it to act as a channel for the spatial communication of information on a molecular scale. A binding site at the terminus of an oligomer detects local information about changes in pH or anion concentration and transmits that information—in the form of a directionality switch in the hydrogen-bond chain—to a remote polarity-sensitive fluorophore. This propagation of polarity-encoded information provides a new mechanism for molecular communication

    Prospects for Discovering Supersymmetry at the LHC

    Full text link
    Supersymmetry is one of the best-motivated candidates for physics beyond the Standard Model that might be discovered at the LHC. There are many reasons to expect that it may appear at the TeV scale, in particular because it provides a natural cold dark matter candidate. The apparent discrepancy between the experimental measurement of g_mu - 2 and the Standard model value calculated using low-energy e+ e- data favours relatively light sparticles accessible to the LHC. A global likelihood analysis including this, other electroweak precision observables and B-decay observables suggests that the LHC might be able to discover supersymmetry with 1/fb or less of integrated luminosity. The LHC should be able to discover supersymmetry via the classic missing-energy signature, or in alternative phenomenological scenarios. The prospects for discovering supersymmetry at the LHC look very good.Comment: 8 pages, 11 figure

    Symmetry Nonrestoration in a Gross-Neveu Model with Random Chemical Potential

    Full text link
    We study the symmetry behavior of the Gross-Neveu model in three and two dimensions with random chemical potential. This is equivalent to a four-fermion model with charge conjugation symmetry as well as Z_2 chiral symmetry. At high temperature the Z_2 chiral symmetry is always restored. In three dimensions the initially broken charge conjugation symmetry is not restored at high temperature, irrespective of the value of the disorder strength. In two dimensions and at zero temperature the charge conjugation symmetry undergoes a quantum phase transition from a symmetric state (for weak disorder) to a broken state (for strong disorder) as the disorder strength is varied. For any given value of disorder strength, the high-temperature behavior of the charge conjugation symmetry is the same as its zero-temperature behavior. Therefore, in two dimensions and for strong disorder strength the charge conjugation symmetry is not restored at high temperature.Comment: 16 pages, 3 figure
    corecore