14 research outputs found

    Stress effects on the Raman spectrum of an amorphous material: theory and experiment on a-Si:H

    Get PDF
    Strain in a material induces shifts in vibrational frequencies, which is a probe of the nature of the vibrations and interatomic potentials, and can be used to map local stress/strain distributions via Raman microscopy. This method is standard for crystalline silicon devices, but due to lack of calibration relations, it has not been applied to amorphous materials such as hydrogenated amorphous silicon (a-Si:H), a widely studied material for thin-film photovoltaic and electronic devices. We calculated the Raman spectrum of a-Si:H \ab initio under different strains ϵ\epsilon and found peak shifts Δω=(−460±10 cm−1)Tr ϵ\Delta \omega = \left( -460 \pm 10\ \mathrm{cm}^{-1} \right) {\rm Tr}\ \epsilon. This proportionality to the trace of the strain is the general form for isotropic amorphous vibrational modes, as we show by symmetry analysis and explicit computation. We also performed Raman measurements under strain and found a consistent coefficient of −510±120 cm−1-510 \pm 120\ \mathrm{cm}^{-1}. These results demonstrate that a reliable calibration for the Raman/strain relation can be achieved even for the broad peaks of an amorphous material, with similar accuracy and precision as for crystalline materials.Comment: 12 pages, 3 figures + supplementary 8 pages, 4 figure

    Hole-mobility-limiting atomic structures in hydrogenated amorphous silicon

    Get PDF
    Low hole mobility currently limits the efficiency of amorphous silicon photovoltaic devices. We explore three possible phenomena contributing to this low mobility: coordination defects, self-trapping ionization displacement defects, and lattice expansion allowing for hole wave-function delocalization. Through a confluence of experimental and first-principles investigations, we demonstrate the fluidity of the relative prevalence of these defects as film stress and hydrogen content are modified, and that the mobility of a film is governed by an interplay between various defect types

    Grain Boundary Engineering for Improved Thin Silicon Photovoltaics

    No full text
    In photovoltaic devices, the bulk disorder introduced by grain boundaries (GBs) in polycrystalline silicon is generally considered to be detrimental to the physical stability and electronic transport of the bulk material. However, at the extremum of disorder, amorphous silicon is known to have a beneficially increased band gap and enhanced optical absorption. This study is focused on understanding and utilizing the nature of the most commonly encountered Σ[subscript 3] GBs, in an attempt to balance incorporation of the advantageous properties of amorphous silicon while avoiding the degraded electronic transport of a fully amorphous system. A combination of theoretical methods is employed to understand the impact of ordered Σ[subscript 3] GBs on the material properties and full-device photovoltaic performance.King Fahd University of Petroleum and Minerals (Project R1-CE-08

    Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

    No full text
    Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.Center for Clean Water and Clean Energy at MIT and KFUPM (Project R1-CE-08)National Science Foundation (U.S.) (Grant 1035400

    3D multi-energy deconvolution electron microscopy

    Get PDF
    Three-dimensional (3D) characterization of nanomaterials is traditionally performed by either cross-sectional milling with a focused ion beam (FIB), or transmission electron microscope tomography. While these techniques can produce high quality reconstructions, they are destructive, or require thin samples, often suspended on support membranes. Here, we demonstrate a complementary technique allowing non-destructive investigation of the 3D structure of samples on bulk substrates. This is performed by imaging backscattered electron (BSE) emission at multiple primary beam energies-as the penetration depth of primary electrons is proportional to the beam energy, depth information can be obtained through variations in the beam acceleration. The detected signal however consists of a mixture of the penetrated layers, meaning the structure's three-dimensional geometry can only be retrieved after deconvolving the BSE emission profile from the observed BSE images. This work demonstrates this novel approach by applying a blind source separation deconvolution algorithm to multi-energy acquired BSE images. The deconvolution can thereby allow a 3D reconstruction to be produced from the acquired images of an arbitrary sample, showing qualitative agreement with the true depth structure, as verified through FIB cross-sectional imaging

    Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics

    No full text
    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices

    Origins of Structural Hole Traps in Hydrogenated Amorphous Silicon

    No full text
    The inherently disordered nature of hydrogenated amorphous silicon (a-Si:H) obscures the influence of atomic features on the trapping of holes. To address this, we have created a set of over two thousand ab initio structures of a-Si:H and explored the influence of geometric factors on the occurrence of deep hole traps using density-functional theory. Statistical analysis of the relative contribution of various structures to the trap distribution shows that floating bonds and ionization-induced displacements correlate most strongly with hole traps in our ensemble.King Fahd University of Petroleum and Minerals (Center for Clean Water and Clean Energy at MIT and KFUPM under Project No. R1-CE-08

    Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics

    No full text
    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices
    corecore