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Stress effects on the Raman spectrum of an amorphous material: Theory and experiment on a-Si:H
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Strain in a material induces shifts in vibrational frequencies. This phenomenon is a probe of the nature of
the vibrations and interatomic potentials and can be used to map local stress/strain distributions via Raman
microscopy. This method is standard for crystalline silicon devices, but due to the lack of calibration relations, it
has not been applied to amorphous materials such as hydrogenated amorphous silicon (a-Si:H), a widely studied
material for thin-film photovoltaic and electronic devices. We calculated the Raman spectrum of a-Si:H ab initio
under different strains ε and found peak shifts �ω = (−460 ± 10 cm−1)Tr ε. This proportionality to the trace of
the strain is the general form for isotropic amorphous vibrational modes, as we show by symmetry analysis and
explicit computation. We also performed Raman measurements under strain and found a consistent coefficient
of −510 ± 120 cm−1. These results demonstrate that a reliable calibration for the Raman/strain relation can be
achieved even for the broad peaks of an amorphous material, with similar accuracy and precision as for crystalline
materials.

DOI: 10.1103/PhysRevB.92.241202 PACS number(s): 63.50.Lm, 78.30.Ly, 63.20.dk, 62.20.−x

Hydrogenated amorphous silicon (a-Si:H) is a photovoltaic
material which has been studied for decades and used
commercially [1,2]. Compared to the more commonly used
crystalline Si (c-Si), a-Si:H has advantages in stronger visible
absorption, cheaper and faster fabrication, and the potential
for flexible thin-film devices [2]. a-Si:H can be used alone or
in heterojunction cells where it can passivate the surface of
c-Si active layers [2,3]. It also has applications for solar water
splitting [4], thin-film transistors [5], bolometers [6], particle
detectors [7], and microelectromechanical systems [8]. How-
ever, widespread adoption has been limited by two important
disadvantages: Mobilities degrade under illumination via the
Staebler-Wronski effect [9], and efficiencies are significantly
limited by low hole mobility [10].

Crystallization to c-Si is used to create higher-mobility
microcrystalline Si (μc-Si) [11,12] and could circumvent
low hole mobility in a-Si:H by adding nanostructured
charge-extraction channels [13]. Conversion to denser c-Si
induces stress, as does deposition [14], thermal expansion, or
other processing. Stress is often large in thin films (and may
be inhomogeneous [15]) and is a critical parameter in a-Si:H
as it affects mobilities [5], defects [16], the Staebler-Wronski
effect [17], mechanical failure properties [18], and potentially
transport via band bending [19].

A standard technique to understand stress effects on c-Si
microelectronic devices is Raman microscopy [20,21], which
yields a spatial distribution of stress in the device (unlike x-ray
diffraction measurements [22]). The Raman-active optical
phonon modes in c-Si are shifted to higher frequency by
compressive strain (and vice versa), with established coef-
ficients [23,24] which are used to translate peak positions
to local strain. Raman microscopy is also commonly used
for a-Si:H and μc-Si, generally for mapping the quality or

*dstrubbe@mit.edu
†Present address: FOM Institute AMOLF, 1098 XG Amsterdam,

The Netherlands.
‡jcg@mit.edu

crystallinity of films via the position and width of the transverse
optical (TO) peak [11] (analogous to the optical phonons
of c-Si). In contrast to the case for c-Si, for a-Si:H the
relation between peak positions and strain has not been clear,
preventing detailed understanding of stress; with accurate
knowledge of the coefficient, these studies would be able
to map stress too. This property also serves as a probe of
vibrations and interatomic potentials [24,25]. Stress effects on
Raman peaks (also called “piezo-Raman” or “phonon defor-
mation potentials”) have been studied for various crystalline
semiconductors [26]. However there has been little work on
amorphous materials, confined to experimental reports on
carbon [27] or carbon and SiC fibers [28], without theory
or consideration of dependence on strain pattern.

In previous work, Fabian and Allen [25] calculated the
effect of hydrostatic pressure on the vibrational modes of large
supercells of a-Si (nonhydrogenated) via Stillinger-Weber
classical potentials but did not compute Raman spectra. An ab
initio study [29] calculated vibrational modes (but not stress
effects) by density-functional theory but obtained Raman
spectra only via semiempirical bond polarizability models,
which gave a significant discrepancy from experiment.

Experimental work by Ishidate et al. [30] and Hishikawa
[31] studied the effect of pressure and bending on the Raman
spectrum of a-Si:H. However, it is not clear how to extract
a strain coefficient (the general materials property) from
these works, due to insufficient detail about the experimental
setups and stress applied [32]. Therefore only qualitative
interpretations of a-Si:H stress from Raman spectroscopy have
been possible [12,33].

In this Rapid Communication, we present a fully ab
initio computation of the Raman spectrum of a-Si:H under
neutral and applied strain, complemented with a systematic
experimental study. We show the general form of peak
shifts with strain in an amorphous material and obtain close
agreement between theory and experiment in the spectra and
the strain coefficient for the TO peak shift. This provides the
calibration needed for quantitative strain mapping of a-Si:H
films for optical, electronic, and mechanical devices, with
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sufficient sensitivity for applications of interest (analyzed in
the Supplemental Material [34]).

Our theoretical calculations use an ensemble of peri-
odic structures generated by the standard classical Monte
Carlo Wooten-Winer-Weaire approach [35], representing local
regions which are averaged to find the overall properties of
a-Si:H. We add hydrogen to the sample by breaking randomly
chosen Si-Si bonds at the beginning of the process, as in our
previous work [36] and implemented in our CHASSM code
[37,38]. We use 34 structures to obtain a smooth Raman
spectrum, each with formula Si64H6 to emulate a typical
10% hydrogen content, in a cube roughly 11 Å on a side
[34]. Density-functional theory (DFT) and density-functional
perturbation theory [39] calculations were performed with the
QUANTUM ESPRESSO code (version 5.1) [40] and the local-
density approximation [41] to obtain the phonons at q = �

and their first-order Raman intensities [42]. These widely
used calculation methods have been found to be generally
reliable for vibrational properties [39]. Each structure was
calculated also with 0.5% uniaxial compressive and tensile
strain, which gave a resolvable effect within a linear regime.
We study the unpolarized (isotropically averaged) Raman
spectrum, with a Gaussian broadening of 5 cm−1 standard
deviation, comparable to the separation between vibrational
modes in an individual structure.

We benchmark the accuracy of our theoretical approach
for strain effects on the Raman spectrum by calculations on
c-Si under [100] uniaxial strain. The Raman-active zone-center
optical phonons have a frequency of 514 cm−1, a typical DFT
level of agreement with the experimental value of 520 cm−1

[43]. The slopes of the split modes are in reasonable agreement
with the measured values for bulk c-Si [24], though slightly too
small: singly-degenerate, calculated −424 cm−1 vs measured
p/2ωc

0 = −481 ± 20 cm−1; doubly-degenerate, calculated
−547 cm−1 vs measured q/2ωc

0 = −601 ± 20 cm−1.
For the experimental measurements, intrinsic a-Si:H films

were deposited using a plasma-enhanced chemical vapor
deposition tool (PECVD, Surface Technology Sys-
tems) to a thickness of ∼ 1.1 μm, on 3-inch-diameter
100 μm (±15 μm) thick 〈100〉 c-Si wafers. Raman mi-
croscopy was performed using a Horiba LabRam-HR800
Raman spectrometer with a 632.8 nm excitation beam focused
to a 1 μm spot size. Compressive stress was applied to the
a-Si:H film by bending the wafer in a custom-built four-point
bending apparatus, as shown in the inset of Fig. 1.

The obtained Raman spectra are shown in Fig. 1. The
experimental results have been “reduced” by multiplication
by the factor ω(1 − e−�ω/kT ) (where ω is the Raman shift
and T = 300 K is the temperature), which is the basis for
Raman temperature determination [44]. We can then directly
compare to the calculated absolute Raman intensities [42,45],
in arbitrary units since we do not have an experimental
intensity calibration. The peaks in a-Si:H are conventionally
named by the corresponding peaks in the vibrational density
of states of c-Si [45,46]. The position of the transverse optical
(TO) peak, the focus of this work, is at 470 cm−1 (theory)
and 480 cm−1 (experiment), which agrees well within the
typical errors of DFT and the variation among a-Si:H samples
[31]. An example calculated vibrational mode in the TO peak
is shown in the inset of Fig. 1. The longitudinal optical

FIG. 1. (Color online) Theoretically calculated Raman spectrum for a-Si:H, and measured Raman spectra for a-Si:H on c-Si, and c-Si,
reduced by removal of the temperature- and frequency-dependent factors (see text), with fits to a-Si:H transverse and longitudinal optical
peaks (TO, LO) in measured spectrum. Left inset: Example calculated Si64H6 TO vibrational mode. Right inset: Experimental setup for Raman
microscopy with four-point bending and orientation of crystal axes in c-Si wafer.
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FIG. 2. (Color online) Effect of strain on the Raman spectra:
theoretical calculations of a-Si:H with neutral strain and 0.5%
compressive and tensile strains, and measurements of a-Si:H on
c-Si with neutral strain and 0.33% compressive strain, with peaks
blueshifted by compressive strain and vice versa.

(LO) shoulder near 400 cm−1 is also in good agreement.
The low-energy spectrum agrees less well due to the more
delocalized modes [25] and sensitivity to the size of the
calculated supercells. The strong peak at 520 cm−1 in the
experiment is due to the underlying c-Si substrate, which
also has a small peak at 300 cm−1 due to second-order
Raman scattering [47]. After a linear baseline correction, the
experimental Raman spectra were fit to a sum of 3 Gaussians
for the a-Si:H features [30] and a Lorentzian for c-Si [47]
according to standard practice; LO and TO fits are shown in
Fig. 1 and the Supplemental Material [34]. We underscore
the significant improvement in theoretical agreement with
experiment compared to the previous DFT/semiempirical
Raman work [29] which underestimated the TO peak by
50 cm−1 and did not show the other peaks. We can now
quantitatively predict the strain effects on the spectrum.

We now focus on the region 400–550 cm−1 around the
a-Si:H TO peak and c-Si optical modes and add the calculated
spectra under 0.5% compressive and tensile uniaxial strains,
and the measured spectrum under 0.33% compressive uniaxial
strain, as shown in Fig. 2. The shifts to lower energies under
tensile strain and higher energies under compressive strain
can be seen in theory and experiment, for both the a-Si:H and
c-Si peaks.

To analyze the strain effect in a-Si:H in our calculation,
we make a one-to-one correspondence between the discrete
vibrational modes in a supercell structure at each strain
level. We find the Raman intensity change with strain is a
small and almost uniform scaling over the spectrum. As a
result, the strain effect on peak positions can be described
by considering just the vibrational frequencies. The ±0.5%
strain was confirmed to be in the linear regime by plotting
frequencies over a range of strains.

For each mode in each structure, we compute the
derivatives of the frequency in the compressive and tensile
strain directions. These derivatives are closely related to the
mode Grüneisen parameters γ = − 1

ω
dω
dε

and are shown in full
in the Supplemental Material [34]. We perform an average
(weighted by the Raman intensities) over the derivatives of
modes with frequencies 450–490 cm−1, yielding an overall TO

peak position derivative of 460 ± 10 cm−1. The uncertainty is
taken as the standard error of the mean, taking only the different
structures as independent.

It is difficult to determine the strain sufficiently accurately
from our wafer curvature via Stoney’s equation [48], and this
would give only an averaged strain over the wafer. Instead we
use the c-Si Raman shifts as an internal calibration of the local
strain at the beam spot. We exploit the fact that our Raman
measurements show both the a-Si:H thin film and the top of
the underlying c-Si substrate (Fig. 1), given the penetration
depth of 1 μm at 632.8 nm for a-Si:H and c-Si [2].

To perform the calibration, we relate the c-Si peak shift
to uniaxial strain according to the approach of Refs. [49] and
[20]. The geometry of our four-point bending setup (inset in
Fig. 1), results in uniaxial stress in [110] (x) in the roughly
rectangular region between the rods, according to the usual
plane stress assumptions [50]. The optical mode detected in
our backscattering geometry is shifted from the unstrained
frequency ωc

0 = 520 cm−1 [43] proportionally to the strain εxx

as �ωc = bεxx , where

b = [ − pνc
xz + q

(
1 − νc

xy

)]
/2ωc

0 = −330 ± 70 cm−1 (1)

(derived in the Supplemental Material [34]). We use c-Si
Poisson ratios νc

xy = 0.064 and νc
xz = 0.28 [51] and the

strain coefficients p = −1.25 ± 0.25 (ωc
0)2 and q = −1.87 ±

0.37(ωc
0)2 from an experiment with the same 632.8 nm

excitation as in this work [23]. Due to stress relaxation (i.e.,
greater νc

xz) near the surface, these strain coefficients are lower
than those obtained at 1064 nm [24], with a signal penetrating
about 100 μm into the bulk [2].

Next we connect the strain in c-Si to the strain in the a-Si:H
film, specifically the trace Tr εa (justified below). Assuming
no slip from the substrate, the strain εxx is the same in the
a-Si:H film. Taking into account the other directions,

Tr εa = dεxx = (
1 − νc

xy − νa
)
εxx, (2)

where the coefficient d = 0.69 ± 0.05, using νa = 0.25 ±
0.05 for dense films of 10% H [52].

We now infer strain for each position of the four-point
bending setup from the c-Si peak shift as Tr εa = d�ωc/b.
Given a Young’s modulus around 80 GPa [53] and strain
0.33%, maximum stress was 260 MPa, well within the range
from PECVD growth [14]. We plot the experimental a-Si:H
peak position with respect to strain in Fig. 3, showing a linear
relationship with regression slope −510 ± 120 cm−1; the
uncertainty is mostly from the c-Si calibration values and νa .
The plotted line with the theoretical slope (and experimental
intercept) also fits the data well. Note that if uniaxial strain
rather than stress had been assumed in the wafer, we would
have obtained b = q/2ωc

0 and d = 1, yielding almost the same
value s = −520 ± 110 cm−1, showing insensitivity to the
exact mechanical boundary conditions. We quote our result
with respect to strain, rather than stress, to be more general
since the shifts are due directly to bond length changes, and
the Young’s modulus relating stress and strain can vary by a
factor of 2 depending on synthesis conditions [53].

Finally, we demonstrate the general form of the a-Si:H TO
peak shift with strain. c-Si has a complicated dependence on
the strain pattern due to its symmetry, but a-Si:H is isotropic

241202-3



RAPID COMMUNICATIONS

DAVID A. STRUBBE et al. PHYSICAL REVIEW B 92, 241202(R) (2015)

FIG. 3. (Color online) Shifts in a-Si:H Raman peak positions vs
strain from uniaxial stress, inferred from c-Si peak shifts. Slopes:
−460 ± 10 cm−1 (theory), −510 ± 120 cm−1 (exp’t fit). Both lines
use experimental intercept. Relation can be used to infer local strain
from Raman microscopy.

except at very short length scales. For example, in our 70-atom
cells, the calculated dielectric constant is ∼ 15 with anisotropy
only ∼ 0.6. Due to this effective symmetry, the calculated
vibrational modes in the TO peak are delocalized, roughly
isotropic, and sensitive to Raman scattering in any polarization
(see inset of Fig. 1). Nonetheless, without any true symmetry,
there is no counterpart to the threefold degeneracy of the c-Si
optical phonons. As a result, the TO band transforms as a scalar
rather than a vector as for c-Si. Since there is no degeneracy,
there is no splitting as of the c-Si modes [23]. In general, the
frequency shift for such a scalar mode in a material would
be �ω = ∑

ij Sij εij where S, like ε, is a symmetric rank-2
tensor. For an isotropic material, symmetry dictates Sij = sδij .
Therefore the peak shift is determined only by the trace of the
strain tensor:

�ωa = s
(
εa
xx + εa

yy + εa
zz

) = s Tr εa. (3)

Indeed, we find in our calculations that the Raman spectrum
is almost indistinguishable for applied uniaxial, biaxial, or
triaxial strain tensors with the same trace, even on a single
70-atom cell [34]. This analysis applies generally to isotropic
amorphous vibrational modes.

We find that our theoretical (−460 ± 10 cm−1) and
experimental (−510 ± 120 cm−1) values are consistent, sup-
porting the accuracy of the results. The agreement also implies
lack of slip between the a-Si:H film and c-Si substrate, as has
been argued for thermal expansion of epitaxial graphene [54],
as slip would relax strain and lower the measured coefficient.
The value is similar to the isotropic one for c-Si (surface),
−430 ± 90 cm−1 [23].

TABLE I. Raman transverse optical (TO) peak positions ω and
mode Grüneisen parameters γ for crystalline (c) and amorphous (a)
Si from: DFT, DFT plus bond polarizability model, experiment, and
classical potentials. From this work unless cited.

DFT Model Exp’t Classical [25]

ωc/cm−1 514 520 [43] 605
ωa/cm−1 470 430 [29] 480 525
γc 0.98 1.08 [24] 0.8
γa 0.98 1.06 1.0

In Table I we compare theoretical and experiment results
for peak frequencies and mode Grüneisen parameters γ of
c-Si and a-Si:H. γ , describing anharmonicity, is important in
the theory of thermal expansion and phonon transport [25,55].
The importance of ab initio calculations is shown by the much
improved agreement with experimental ω and γ , compared to
classical potentials [25].

To conclude, we obtained the Raman spectra of a-Si:H
from first principles in good agreement with experiment.
We computed the strain coefficient for the TO peak from
theory as −460 ± 10 cm−1, and measured a consistent value
of −510 ± 120 cm−1, achieving an experimental uncertainty
similar to that for c-Si surfaces despite having to deconvolve
much broader peaks. We demonstrated, by symmetry analysis
and explicit computation, the general form of strain effects
on isotropic amorphous vibrational mode frequencies, as
�ω = s Tr ε, determined only by the trace of the strain.
The actual strain pattern (as in c-Si) needs to be provided
by elasticity modeling [20]. Our results provide consistent
and reliable calibration for the Raman/strain relation, enabling
micro-Raman mapping of strain in a-Si:H films for the
further development of photovoltaic, electronic, and mechan-
ical devices.
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