3,040 research outputs found

    Structure, (governance) and health: authors reply

    Get PDF
    This is a reply to the paper entitled Structure, (governance) and health: an unsolicited response by Daniel D Reidpath and Pascale Allote

    Experimental Predictions of The Functional Response of A Freshwater Fish

    Get PDF
    The functional response is the relationship between the feeding rate of an animal and its food density. It is reliant on two basic parameters; the volume searched for prey per unit time (searching rate) and the time taken to consume each prey item (handling time). As fish functional responses can be difficult to determine directly, it may be more feasible to measure their underlying behavioural parameters in controlled conditions and use these to predict the functional response. Here, we tested how accurately a Type II functional response model predicted the observed functional response of roach Rutilus rutilus, a visually foraging fish, and compared it with Type I functional response. Foraging experiments were performed by exposing fish in tank aquaria to a range of food densities, with their response captured using a two-camera videography system. This system was validated and was able to accurately measure fish behaviour in the aquaria, and enabled estimates of fish reaction distance, swimming speed (from which searching rate was calculated) and handling time to be measured. The parameterised Type II functional response model accurately predicted the observed functional response and was superior to the Type I model. These outputs suggest it will be possible to accurately measure behavioural parameters in other animal species and use these to predict the functional response in situations where it cannot be observed directly

    Spreading, Nonergodicity, and Selftrapping: a puzzle of interacting disordered lattice waves

    Full text link
    Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transitions, the quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays, to name just a few examples. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field of lattice waves. In particular it leads to the prediction and observation of two different regimes of destruction of Anderson localization - asymptotic weak chaos, and intermediate strong chaos, separated by a crossover condition on densities. On the other side approximate full quantum interacting many body treatments were recently used to predict and obtain a novel many body localization transition, and two distinct phases - a localization phase, and a delocalization phase, both again separated by some typical density scale. We will discuss selftrapping, nonergodicity and nonGibbsean phases which are typical for such discrete models with particle number conservation and their relation to the above crossover and transition physics. We will also discuss potential connections to quantum many body theories.Comment: 13 pages in Springer International Publishing Switzerland 2016 1 M. Tlidi and M. G. Clerc (eds.), Nonlinear Dynamics: Materials, Theory and Experiment, Springer Proceedings in Physics 173. arXiv admin note: text overlap with arXiv:1405.112

    Anaphylactic response to topical fluorescein 2% eye drops: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The intravenous use of fluorescein 10% during retinal angiography can cause severe systemic reactions including, on rare occasions, anaphylaxis. Fluorescein 2% eye drops are used extensively for clinical examination and diagnosis, but to the best of our knowledge, they have only been reported as being responsible for a systemic anaphylactic response on two previous occasions.</p> <p>Case presentation</p> <p>We report the case of a 51-year-old woman who developed an anaphylactic reaction when she was administered fluorescein sodium 2% eye drops after cataract surgery. This was the second time she had been exposed to fluorescein. She had brittle asthma and a history of anaphylaxis following exposure to a variety of drug and food allergens. She was successfully resuscitated and recovered completely over a period of two days.</p> <p>Conclusions</p> <p>Fluorescein 2% drops are universally used in general practice, ophthalmology, optometry, and casualty departments. Our case report reveals the potential for this benign eye drop to cause a life-threatening systemic reaction and emphasises the importance of considering this consequence when administering topical fluorescein 2% to a patient with a history of anaphylaxis to other allergens.</p

    A Contributing Role for Anti-Neuraminidase Antibodies on Immunity to Pandemic H1N1 2009 Influenza A Virus

    Get PDF
    Exposure to contemporary seasonal influenza A viruses affords partial immunity to pandemic H1N1 2009 influenza A virus (pH1N1) infection. The impact of antibodies to the neuraminidase (NA) of seasonal influenza A viruses to cross-immunity against pH1N1 infection is unknown.Antibodies to the NA of different seasonal H1N1 influenza strains were tested for cross-reactivity against A/California/04/09 (pH1N1). A panel of reverse genetic (rg) recombinant viruses was generated containing 7 genes of the H1N1 influenza strain A/Puerto Rico/08/34 (PR8) and the NA gene of either the pandemic H1N1 2009 strain (pH1N1) or one of the following contemporary seasonal H1N1 strains: A/Solomon/03/06 (rg Solomon) or A/Brisbane/59/07 (rg Brisbane). Convalescent sera collected from mice infected with recombinant viruses were measured for cross-reactive antibodies to pH1N1 via Hemagglutinin Inhibition (HI) or Enzyme-Linked Immunosorbent Assay (ELISA). The ectodomain of a recombinant NA protein from the pH1N1 strain (pNA-ecto) was expressed, purified and used in ELISA to measure cross-reactive antibodies. Analysis of sera from elderly humans immunized with trivalent split-inactivated influenza (TIV) seasonal vaccines prior to 2009 revealed considerable cross-reactivity to pNA-ecto. High titers of cross-reactive antibodies were detected in mice inoculated with either rg Solomon or rg Brisbane. Convalescent sera from mice inoculated with recombinant viruses were used to immunize naïve recipient Balb/c mice by passive transfer prior to challenge with pH1N1. Mice receiving rg California sera were better protected than animals receiving rg Solomon or rg Brisbane sera.The NA of contemporary seasonal H1N1 influenza strains induces a cross-reactive antibody response to pH1N1 that correlates with reduced lethality from pH1N1 challenge, albeit less efficiently than anti-pH1N1 NA antibodies. These findings demonstrate that seasonal NA antibodies contribute to but are not sufficient for cross-reactive immunity to pH1N1

    Twinning superlattices in indium phosphide nanowires

    Full text link
    Here, we show that we control the crystal structure of indium phosphide (InP) nanowires by impurity dopants. We have found that zinc decreases the activation barrier for 2D nucleation growth of zinc-blende InP and therefore promotes the InP nanowires to crystallise in the zinc blende, instead of the commonly found wurtzite crystal structure. More importantly, we demonstrate that we can, by controlling the crystal structure, induce twinning superlattices with long-range order in InP nanowires. We can tune the spacing of the superlattices by the wire diameter and the zinc concentration and present a model based on the cross-sectional shape of the zinc-blende InP nanowires to quantitatively explain the formation of the periodic twinning.Comment: 18 pages, 4 figure

    Relationship between temporomandibular joint dynamics and mouthguards: feasibility of a test method

    Full text link
    A test system was developed establishing the feasibility of collecting biomechanical data as they relate to the use of mouthguards. Previous experimental studies have examined the physical and mechanical properties of mouthguard materials. This information has been used as a guide for establishing material standards and specifications for the fabrication of mouthguards, but it lacks the key biomechanical parameters required for a thorough mouthguard evaluation. The current study was designed to assess whether the impact force, condylar deflection, and strain superior to the temporomandibular joint region could be measured. A drop test was conducted on a cadaveric specimen to simulate loading at the chin point. To measure the force of impact, an accelerometer was attached to an impactor of known mass. High-speed biplanar (1000 frames per second) radiographs were used to determine condylar displacement. Radio-opaque markers were inserted into the bone at predetermined locations. Total displacement of these markers was determined in reference to anatomical landmarks. Strain gauges were attached to the mandible and skull to monitor the effects of the condyle impacting the base of the skull. Based on the data collected, forces were calculated by determining the product of the time-based acceleration and known mass. A measurable change in force between the mouthguards and the control (no mouthguard) was demonstrated. The average condylar displacement was successfully measured and indicated as an increase in total deflection for impacts conducted with mouthguards. Quantifiable strain was measured in the region above the mandibular fossa with and without the insertion of a mouthguard at all impact conditions. However, it was determined that additional gauges would provide critical data. Key biomechanical parameters for chin-point impacts were determined in the current study. The technique demonstrated that both displacement within the mandibular fossa and loading of the condyles occur during the impact event. Although the current study established a technique that can be used to examine the relationship between mouthguards and jaw-joint injuries, the role, if any, mouthguards play in the reduction of injuries cannot be established until a thorough analysis is completed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74031/1/j.1600-9657.2004.00213.x.pd

    Sensitive detection of Aβ protofibrils by proximity ligation - relevance for Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein aggregation plays important roles in several neurodegenerative disorders. For instance, insoluble aggregates of phosphorylated tau and of Aβ peptides are cornerstones in the pathology of Alzheimer's disease. Soluble protein aggregates are therefore potential diagnostic and prognostic biomarkers for their cognate disorders. Detection of the aggregated species requires sensitive tools that efficiently discriminate them from monomers of the same proteins. Here we have established a proximity ligation assay (PLA) for specific and sensitive detection of Aβ protofibrils via simultaneous recognition of three identical determinants present in the aggregates. PLA is a versatile technology in which the requirement for multiple target recognitions is combined with the ability to translate signals from detected target molecules to amplifiable DNA strands, providing very high specificity and sensitivity.</p> <p>Results</p> <p>For specific detection of Aβ protofibrils we have used a monoclonal antibody, mAb158, selective for Aβ protofibrils in a modified PLA, where the same monoclonal antibody was used for the three classes of affinity reagents required in the assay. These reagents were used for detection of soluble Aβ aggregates in solid-phase reactions, allowing detection of just 0.1 pg/ml Aβ protofibrils, and with a dynamic range greater than six orders of magnitude. Compared to a sandwich ELISA setup of the same antibody the PLA increases the sensitivity of the Aβ protofibril detection by up to 25-fold. The assay was used to measure soluble Aβ aggregates in brain homogenates from mice transgenic for a human allele predisposing to Aβ aggregation.</p> <p>Conclusions</p> <p>The proximity ligation assay is a versatile analytical technology for proteins, which can provide highly sensitive and specific detection of Aβ aggregates - and by implication other protein aggregates of relevance in Alzheimer's disease and other neurodegenerative disorders.</p

    Determining Peptide Partitioning Properties via Computer Simulation

    Get PDF
    The transfer of polypeptide segments into lipid bilayers to form transmembrane helices represents the crucial first step in cellular membrane protein folding and assembly. This process is driven by complex and poorly understood atomic interactions of peptides with the lipid bilayer environment. The lack of suitable experimental techniques that can resolve these processes both at atomic resolution and nanosecond timescales has spurred the development of computational techniques. In this review, we summarize the significant progress achieved in the last few years in elucidating the partitioning of peptides into lipid bilayer membranes using atomic detail molecular dynamics simulations. Indeed, partitioning simulations can now provide a wealth of structural and dynamic information. Furthermore, we show that peptide-induced bilayer distortions, insertion pathways, transfer free energies, and kinetic insertion barriers are now accurate enough to complement experiments. Further advances in simulation methods and force field parameter accuracy promise to turn molecular dynamics simulations into a powerful tool for investigating a wide range of membrane active peptide phenomena
    corecore