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Abstract. In this article we investigate the positive, i.e. ¬, ⊥-free for-
mulas of intuitionistic propositional and predicate logic, IPC and IQC,
and minimal logic, MPC and MQC. For each formula ϕ of IQC we define
the positive formula ϕ+ that represents the positive content of ϕ. The
formulas ϕ and ϕ+ exhibit the same behavior on top models, models with
a largest world that makes all atomic sentences true. We characterize the
positive formulas of IPC and IQC as the formulas that are immune to the
operation of turning a model into a top model. With the +-operation on
formulas we show, using the uniform interpolation theorem for IPC, that
both the positive fragment of IPC and MPC respect a revised version
of uniform interpolation. In propositional logic the well-known theorem
that KC is conservative over the positive fragment of IPC is shown to
generalize to many logics with positive axioms. In first-order logic, we
show that IQC + DNS (double negation shift) + KC is conservative over
the positive fragment of IQC and similar results as for IPC.

Keywords: Intuitionistic logic · Minimal logic · Jankov’s logic · Inter-
mediate logics · Positive formulas · Interpolation · Conservativity

1 Introduction

In this paper we discuss the formulas in intuitionistic logic containing no nega-
tion or ⊥. For propositional logic IPC this is the fragment [∧,∨,→]. Smaller frag-
ments not containing both ∨ and → have been extensively studied. By Diego’s
theorem [4] they are locally finite, i.e. they do contain only finitely many equiv-
alence classes of formulas in a fixed finite number of variables. For a discussion
of the history of these studies see [15]. The fragment [∧,∨,→], which we call the
positive fragment, does not have this property. It has been little studied as a frag-
ment. Its interest is to start with that it has a very close relationship to minimal
logic, the logic resulting when the ex falso principle is deleted from intuitionistic
logic. In fact, one can see minimal propositional logic as this fragment with one
designated propositional variable (the contradiction), and this is not different
in first order logic. The ex falso principle has been criticized from the start, for
example by Kolmogorov [13] in the earliest partial formalization of intuitionistic
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logic. Heyting, however, did accept the principle in his basic papers [10], and
from then on it has been accepted as a principle of intuitionistic logic. After
this, Johansson, not supporting the ex falso principle, introduced minimal logic
in [12]. Some proponents of intutionistic mathematics (Griss [9], van Danzig)
favored the idea of dropping negation altogether: negationless mathematics, but
they had few followers. Brouwer himself thought formulas with negation to be
indispensable in intuitionistic mathematics [1].

It is worth mentioning that in the pure arithmetic (of natural numbers),
formalized in Heyting Arithmetic HA it makes no difference whether one accepts
the ex falso principle or introduces negation, since in HA from 0 = 1 all arithmetic
sentences are derivable without the use of either (see e.g. [16], Vol. I, Proposition
3.2, p. 126). In analysis this is still true as long as one has only equations between
numerical terms as atomic formulas, but no longer so when one e.g. has set
variables with undecidable atomic formulas X(t). A final striking fact is that
first order intuitionistic logic without ⊥ can be proved to be complete for so-
called Beth-models by constructive methods whereas this is not the case for full
first order logic (see [16], Vol. II, p. 685, which uses a proof by H. Friedman in an
unpublished manuscript). In any case, it is good to start with logic to see how the
positive fragment fits into the full logic. For that purpose we define in this paper
a +-operation on the formulas of intuitionistic logic which we claim represents
their positive content. This operation turns out be very useful in studying various
properties of positive formulas in the framework of the full logic.

Minimal propositional logic MPC and minimal predicate logic MQC are
obtained from the positive fragment, i.e. the ¬,⊥-free fragment, of intuition-
istic propositional logic IPC and intuitionistic predicate logic IQC by adding a
weaker negation: ¬ϕ is defined as ϕ→ f , where the special propositional variable
f is interpreted as the contradiction. Therefore, the language of minimal logic
is the ¬,⊥-free fragment of intuitionistic logic plus f . Variable f has no specific
properties, the Hilbert type system for MQC is as IQC’s but without f → ϕ. An
alternative formulation of minimal logic, in fact the original one, in a language
containing ¬ instead of f can be given by adding to a Hilbert type axiom system
for the positive fragment the axiom (p → q) → ((p → ¬q) → ¬p) (see [12]).

For the semantics of minimal logic, f is interpreted as an ordinary proposi-
tional variable, so we get the semantics of the [∨,∧,→]-fragment of IPC (resp.
the [∨,∧,→,∀,∃]-fragment of IQC), with an additional propositional variable f .

The content of this article is the following:
In Sect. 2 we recall the syntax and semantics of intuitionistic and minimal

logic. In Sect. 3 we introduce the top-model property and the +-operation on
formulas, and show that the top-model property characterizes the positive for-
mulas of IPC and IQC. We then use this property in Sect. 4 to show that the
positive fragment of IPC has a revised form of uniform interpolation and that
this transfers to MPC. In Sect. 5 we discuss the behavior of positive formulas
in some extensions of IPC and IQC, taking as a starting point the theorem that
Jankov’s Logic KC has the same positive fragment as IPC.



Positive Formulas in Intuitionistic and Minimal Logic 177

2 Syntax and Semantics of MPC

In this section we recall the syntax as well as the derivation systems of IPC, IQC,
MPC and MQC, and their Kripke semantics. For more details, see [2] and [17].

2.1 Syntax

The propositional language LI(P ) of IPC consists of a countable or finite set P of
propositional variables p0, p1, p2, . . . , propositional constants ⊥,� and binary
connectives ∧,∨,→. A first order language LI(Q) of IQC consists of a countable or
finite set Q of predicate letters and individual constants1, propositional constants
⊥,�, binary connectives ∧,∨,→ and quantifiers ∀ and ∃. In both cases ¬ϕ is
defined as ϕ → ⊥, although in practice it is often convenient to view formulas
as containing both ¬ and ⊥. The positive fragment L+

I (P ) of IPC consists of the
formulas of LI(P ) that do not contain ¬ or ⊥, similarly for a language LI(Q).

The propositional language LM(P ) of MPC (resp. first order language LM(Q)
of MQC) consists of the formulas of the positive fragment to which the special
propositional variable f is added. We may drop the indices I and M and write
L(P ) etc. if the distinction is irrelevant.

We take the axioms of IPC as in [2]. The axioms for MPC are the same except
that ⊥→ ϕ is left out. So, derivations in MPC are the same as in IPC except
that no ⊥ or ¬ occurs, instead f may have occurrences. To add predicate-logical
axioms to obtain IQC and MQC we use the approach of Enderton [5] to classical
logic with universally quantified axioms and modus ponens as the only rule. In
this paper we will both proof-theoretically and semantically be only interested
in sentences.

For the discussion of uniform interpolation in Sect. 4 we introduce the fol-
lowing notation: For any formula ϕ and any sequence p = (p1, . . . , pn) of propo-
sitional variables (here pi can be f , but cannot be ⊥,�), ϕ(p) is a formula with
only propositional variables in p.

2.2 Kripke Semantics

In this part we give the Kripke semantics of our systems.

Definition 1. A propositional Kripke frame is a pair F = (W,R) where W is
a non-empty set and R is a partial order on it.

A propositional Kripke model is a triple M = (W,R, V ) where (W,R) is a
Kripke frame and V is a valuation V : P ∪ {f} → P(W ) (where P(W ) is
the powerset of W) such that for any q ∈ P ∪ {f}, V (q) is an upset: for any
w,w′ ∈ W , w ∈ V (q) and wRw′ imply w′ ∈ V (q).

To be able to treat propositional and predicate logic uniformly we define first-
order models in a similar way. For a language L(Q), we write AtQ or At for the
set of atomic sentences.
1 We do not consider identity and functional symbols, but our results will surely hold

for the extension with such symbols.
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Definition 2. A predicate Kripke frame for a language L(Q) is a triple F =
(W,R, {Dw |w ∈ W}) where W is a non-empty set, R is a partial order on W ,
and {Dw |w ∈ W} a set of non-empty domains such that for any w,w′ ∈ W ,
wRw′ implies Dw ⊆ Dw′ .

A predicate Kripke model for a language L(Q) is a quadrupleM = (W,R, {Dw |
w ∈ W}, V ) where (W,R, {Dw |w ∈ W}) is a Kripke frame and V is a valuation
V : At ∪ {f} → P(W ) such that for any Ad1 . . . dk in At, V (Ad1 . . . dk) ⊆ {w ∈
W | (d1, . . . , dk) ∈ (Dw)k}, and w,w′ ∈ W , w ∈ V (Ad1 . . . dk) and wRw′ imply
w′ ∈ V (Ad1 . . . dk), similarly for f .

For propositional formulas, the satisfaction relation is defined as usual with
clauses for p, f , ⊥, �, ∨,∧,→, where the semantics of f is the same as for the
other propositional variables. For predicate logic only sentences will be evaluated
with clauses for ∀,∃ as e.g. in van Dalen [19]. In the first order case w |= ϕ (and
hence w �|= ϕ) is only defined if the individual constants in ϕ are in Dw. If we
define V on P or At and omit the clause for f , then we get the Kripke semantics
of IPC or IQC; if we omit the clause for ⊥, then we get the Kripke semantics
of MPC or MQC. We use |=I and |=M to distinguish the satisfaction relation of
IQC and MQC, and omit the index when it is not important or clear from the
context.

For IQC, we have the following completeness theorem (see e.g. [2]):

Theorem 1 (Strong Completeness of IQC)
For any set of IQC-sentences Γ and ϕ, Γ IQC ϕ iff Γ |=I ϕ.

By a standard Henkin type completeness proof, we have that MQC is strongly
complete with respect to Kripke models, i.e. for any Γ and ϕ, Γ MPC ϕ iff
Γ |=M ϕ. The proof procedure is essentially the same as the proof for IQC with
respect to Kripke frames, just leave out ⊥ and the accompanying condition that
the members of the model have to be consistent sets (which of course they are).

Theorem 2 (Strong Completeness of MQC)
For any MQC-formulas Γ and ϕ, Γ MQC ϕ iff Γ |=M ϕ.

By a completeness-via-canonicity proof using adequate sets, we have the finite
model property for IPC (again see [2]) and thereby for MPC:

Theorem 3 (Finite Model Property of MPC)
For any MPC-formula ϕ, if �MPC ϕ, then there is a rooted finite Kripke model

M falsifying ϕ.

By the completeness theorem for MQC and IQC, since the semantic behavior of
MQC in the language LM(Q) is exactly the same as that of IQC in the language
LI(Q ∪ {f}) without ⊥ (i.e. the positive [∨,∧,→,�,∀,∃]-fragment L+

I (Q ∪ {f})
of LI(Q ∪ {f})), we can regard MQC as the positive fragment of IQC, and we
have the following lemma:

Lemma 1. For any sentences Γ and ϕ in LM(Q) = L+
I (Q ∪ ({f}), Γ MQC ϕ

iff Γ IQC ϕ.
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This allows us to write ϕ if the index does not matter.
For intermediate logics we sometimes need descriptive frames.

Definition 3. A general frame is a triple F = 〈W,R,P〉, where 〈W,R〉 is a
Kripke frame and P is a family of upward closed sets containing ∅ and closed
under ∩, ∪ and the following operation ⊃: for every X,Y ⊆ W ,

X ⊃ Y = {x ∈ W | ∀y ∈ W (xRy ∧ y ∈ X → y ∈ Y )}

Elements of the set P are called admissible sets.

Definition 4. A general frame F = 〈W,R,P〉 is called refined if for any
x, y ∈ W ,

∀X ∈ P (x ∈ X → y ∈ X) ⇒ xRy.

F is called compact, if for any family Z ⊆ P ∪ {W \ X |X ∈ P} with the
finite intersection property,

⋂
(Z) �= ∅.

Definition 5. A general frame F is called a descriptive frame iff it is refined
and compact.

Intermediate propositional logics are complete with respect to descriptive frames
(see [2]):

Theorem 4. If L is an intermediate propositional logic, then, for all formulas
ϕ, L ϕ iff ϕ is valid in all descriptive frames F that satisfy L.

3 The Top-Model Property

We give a characterization of the ¬,⊥-free formulas of IPC by means of the
following property:

Definition 6 (Top-Model Property)

1. A propositional or predicate Kripke model M = (W,R, V ) is a top model if
it has a largest point t, the top of the model, in which all formulas in P or
At are satisfied.

2. AnymodelM = (W,R, V ) can be turned into its topmodelM+ = (W+, R+, V +)
by adding a node t at the top of themodel, connecting all worldsw to t, andmaking
all atomic sentences true in t. In case of first order logic, Dt =

⋃
w∈W Dw.

3. A formula ϕ has the top-model property, if for all Kripke models M =
(W,R, V ), all w ∈ W , M, w |= ϕ iff M+, w |= ϕ.

Analogously to 1,2 of the above definition we talk about top frames.

Lemma 2. Let t be the top of any top model, and let ϕ be a positive formula
without free variables. Then t |= ϕ.

Proof. Trivial, by induction on the length of ϕ. ��
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For the top-model property we have the following theorem. It was first proved
in [18,21] (see also [15]). We write ϕ ∼ ψ for  ϕ ↔ ψ.

Theorem 5. 1. Every formula in L+
I (P ), L+

I (Q), LM(P ) and LM(Q) has the
top-model property, and so has ⊥.

2. For any formula ϕ in LI(P ), there exists a procedure to produce a formula
ϕ+ in L+

I (P ) or ϕ+ =⊥ such that for any top model M and any node w in
M, we have M, w |= ϕ ↔ ϕ+.

3. For any formula ϕ in LI(Q), there exists a procedure to produce a formula
ϕ+ in L+

I (Q) or ϕ+ =⊥ such that for any top model M and any node w in
M, we have M, w |= ϕ ↔ ϕ+.

4. For any set of formulas Γ in LI(P ) or LI(Q), any top model M and any
node w in M, we have M, w |= Γ iff M, w |= Γ+, where Γ+ = {γ+ | γ ∈ Γ}.

Proof. 1. By induction on the length of the formula ϕ. We just give the inductive
steps for → and ∀. Let t denote the top element of M.

– M, w |= ψ → χ ⇐⇒ in all w′ such that wRw′, if M, w′ |= ψ then M, w′ |= χ
⇐⇒ IH in all w′ ∈ W\{t} such that wRw′, if M+, w′ |= ψ then M+, w′ |= χ
[Now note that since ϕ is positive, and χ is a subformula of ϕ, it must be the
case that χ is positive. Therefore, by Lemma 2, t |= χ] ⇐⇒ in all w′ ∈ W
such that wRw′, if M+, w′ |= ψ then M+, w′ |= χ ⇐⇒ M+, w |= ψ → χ.

– M, w |= ∀zψ(z) ⇐⇒ if wRw′ then M, w′ |= ψ(d) for all d ∈ Dw′ [Now
note that by Lemma 2, t |= ψ(d) for all d ∈ Dt.] ⇐⇒ IH if wRw′ then
M+, w′ |= ψ(d) for all d ∈ Dw′ ⇐⇒ M+, w |= ∀zψ(z).

2 and 3. We obtain ϕ+ from ϕ in stages. That is, ϕ = ϕ0 ��� ϕ1 ��� · · · ���
ϕn = ϕ+. Each stage m starts off with ϕm and produces ϕm+1. The procedure
starts at n = 0.

Stage 2n. Remove all � and ⊥ using the following equivalences:

Remove⊥ Remove�

⊥ ∧ ϕ ∼ ϕ ∧ ⊥ ∼ ⊥ � ∧ ϕ ∼ ϕ ∧ � ∼ ϕ

⊥ ∨ ϕ ∼ ϕ ∨ ⊥ ∼ ϕ � ∨ ϕ ∼ ϕ ∨ � ∼ �
⊥ → ϕ ∼ � � → ϕ ∼ ϕ

ϕ → ⊥ ∼ ¬ϕ ϕ →� ∼ �
¬⊥ ∼ � ¬� ∼ ⊥

This procedure may produce a formula ϕ2n+1 containing neither � nor ⊥.
However, it is also possible that it ends by producing � or ⊥. In the latter two
cases, the theorem is trivial, since in any model M and any world w, M, w |= �
and M, w �|= ⊥, and therefore ⇐⇒ holds. So, in the remainder of this proof we
assume that not ϕ2n+1 = ⊥ and not ϕ2n+1 = �. Note the special feature of the
procedure: a new negation may be produced.
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Stage 2n + 1. Consider the first ¬ in ϕ2n+1 such that ¬ψ is a subformula of
ϕ2n+1 and ψ is positive: that is, ψ does not contain ¬,⊥. This can be done
since all ⊥ were removed in the previous stage. Replace ¬ψ by ⊥. This results
in ϕ2n+2 = ϕ2n+1[⊥/¬ψ], which contains less symbols than ϕ2n+1.

The even stages use logical equivalences, so by definition M+, w |= ϕ2n ⇐⇒
M+, w |= ϕ2n+1 (valuations on M+ are preserved), since for equivalent formulas
this holds for any model.

Next, it has to be shown that also the odd stages preserve valuations on
M+, that is: M+, w |= ϕ2n+1 ⇐⇒ M+, w |= ϕ2n+2 = ϕ2n+1[⊥/¬ψ] for all
n ∈ N. Let ψ = ψ(x1, . . . , xk) and d1, . . . , dk ∈ Dw. Consider the valuation of
ψ(d1, . . . , dk) in top world t. We have chosen ψ positive. Therefore, by Lemma 2,
t |= ψ(d1, . . . , dk). By definition of M+, wRt for all w ∈ W , so for all w ∈ W ,
there is a w′ such that wRw′ and w′ |= ψ(d1, . . . , dk) (namely w′ = t). Therefore,
for all w ∈ W , it must be the case that M+, w �|= ¬ψ(d1, . . . , dk). It can be
concluded by a trivial induction that ϕ2n+1 is equivalent to ϕ2n+1[⊥/¬ψ].

The described procedure will come to an end, since all steps reduce the
number of symbols in the formula. Therefore, there is a final stage, say stage m,
which produces a ϕm+1 that no longer contains ⊥ or ¬. Now define ϕm+1 = ϕ+.
Since both the odd and even stages preserve valuations on M+, we know that
M+, w |= ϕn−1 ⇐⇒ M+, w |= ϕn for all n. By induction, this implies that
M+, w |= ϕ ⇐⇒ M+, w |= ϕ+.

4 follows immediately from 2 and 3. ��
And this theorem leads to the following characterization.

Theorem 6. A formula ϕ of IPC or IQC has the top-model property iff ϕ is
equivalent to a ¬,⊥-free formula (in fact to ϕ+) or to ⊥.

Proof. The direction from right to left is Theorem5.1, so let us prove the other
direction and assume that ϕ has the top-model property, but is not equivalent
to ϕ+. Then there is a model M with a world w so that ϕ and ϕ+ have different
truth values in M, w. Then, because both have the top-model property, ϕ and
ϕ+ have different truth values in M+, w as well. But that contradicts the fact
given by Theorem5 that ϕ and ϕ+ behave identically on top models. ��
Theorem 7. 1. If IPC ϕ, then IPC ϕ+. If IQC ϕ, then IQC ϕ+.
2. Not always IPC ϕ → ϕ+ and not always IPC ϕ+ → ϕ.
3. If ϕ(ψ1, . . . , ψk) arises from the simultaneous substitution of ψ1, . . . , ψk for

p1, . . . , pk in ϕ(p1, . . . , pk), then (ϕ(ψ1, . . . , ψk))+ = (ϕ(ψ+
1 , . . . , ψ+

k ))+.
4. If IPC ϕ → ψ, then IPC ϕ+ → ψ+. If IQC ϕ → ψ, then IQC ϕ+ → ψ+.
5. ϕ+ is unique up to provable equivalence.
6. If IPC ϕ → ψ and ψ is positive, then IPC ϕ+ → ψ. If IQC ϕ → ψ and

ψ is positive, then IQC ϕ+ → ψ. If IPC ψ → ϕ and ψ is positive, then
IPC ψ → ϕ+. If IQC ψ → ϕ and ψ is positive, then IQC ψ → ϕ+.

7. If Γ IPC ϕ and ϕ is positive, then Γ+IPC ϕ, where Γ+ = {γ+ | γ ∈ Γ}.
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Proof. 1. Assume not IPC ϕ+. Then M, w exist such that M, w �|= ϕ+. By
Theorem 5.1 also M+, w �|= ϕ+. But then by Theorem5.2, M+, w �|= ϕ, so not
IPC ϕ. Same for IQC.

2. For ϕ = p ∨ ¬p, ϕ+ = p, so �IPC ϕ → ϕ+. For ϕ = ¬¬p, ϕ+ = �, so
�IPC ϕ+ → ϕ.

3. By the fact that the construction of the +-formula in Theorem5 is inside-
out. We can construct (ϕ(ψ1, . . . , ψk))+ by first applying the +-operation to
the formulas ψ1, . . . , ψk in ϕ(ψ1, . . . , ψk) to obtain ϕ(ψ+

1 , . . . , ψ+
k ), and then

continue to work on the remainder to obtain (ϕ(ψ+
1 , . . . , ψ+

k ))+.
4. Suppose IPC ϕ → ψ and �IPC ϕ+ → ψ+, then by the completeness of IPC,

there is a rooted model M with root w such that M, w � ϕ+ and M, w � ψ+.
By Theorem 5.1, M+, w � ϕ+ and M+, w � ψ+. By Theorem 5.2, M+, w � ϕ
and M+, w � ψ, a contradiction to IPC ϕ → ψ. For IQC, the proof is similar.

5. Immediate from 4.
6. From 4.
7. Similar to 4, where the strong completeness is used. ��
Items 5 and 6 give us the right to say that ϕ+ represents the positive content of ϕ.
Item 3 will be used to obtain results on positive formulas proved by intermediate
logics in Sect. 5.

We finally sketch another approach to get to Theorem7.1 the advantage of
which is that it can be transformed into a full proof-theoretic proof. We do not
fully execute this here because of lack of space. The first step is the next theorem
for which we provide here only a semantic proof.

Theorem 8. If ϕ(p1, . . . , pk) is positive and IPC ¬¬(p1 ∧ · · · ∧ pk) → ϕ, then
IPC ϕ.

Proof. Asume, ϕ positive, �IPC ϕ. Then for some model M with root r, M, r �|= ϕ.
Hence, by Theorem 5.1, M+, r �|= ϕ. But also, M+, r |= ¬¬(p1 ∧ · · · ∧ pk), so
M+, r �|= ¬¬(p1 ∧ · · · ∧ pk) → ϕ, and finally, �IPC ¬¬(p1 ∧ · · · ∧ pk) → ϕ. ��
The next step (which replaces Lemma 2 in this approach) is trivial:

Lemma 3. If ψ(p1, . . . , pk) is positive, then IPC ¬¬(p1 ∧ · · · ∧ pk) → ¬¬ψ.

After this one proceeds to prove Theorem 7.1 as follows. If IPC ϕ, then also
IPC ¬¬(p1 ∧ · · · ∧ pk) → ϕ, after which IPC ¬¬(p1 ∧ · · · ∧ pk) → ϕ+ follows,
since under the assumption ¬¬(p1∧· · ·∧pk), ϕ and ϕ+ are equivalent by the same
procedure as used in the proof of Theorem5.2, using the just stated lemma on the
way when we replace ¬ψ by ⊥. Finally, we can conclude  ϕ+ by Theorem 8. For
first order logic this approach works as well when one replaces ¬¬(p1 ∧ · · · ∧ pk)
by ¬¬∀x(A1 ∧ · · · ∧ Ak).

4 Uniform Interpolation

In this section we prove a revised version of the uniform interpolation theorem
for the positive fragment of IPC and for MPC, using the uniform interpolation
theorem of IPC and the top-model property.
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First of all we state the uniform interpolation theorem of IPC. We formulate
the theorem for formulas ϕ(p, q) and ψ(p, r) with one variable q and r in addition
to the common ones p; the more general case with q and r then follows by
repeated application.

Theorem 9 (Uniform Interpolation Theorem of IPC)

1. For any formula ϕ(p, q) in which q is not a member of p, there is a formula
χ(p), the uniform post-interpolant for ϕ(p, q), such that
(a) IPCϕ(p, q) → χ(p),
(b) For any ψ(p, r) where r and p, q are disjoint, if IPC ϕ(p, q) → ψ(p, r),

then IPCχ(p) → ψ(p, r).
2. For any formula ψ(p, r) in which r is not a member of p, there is a formula

χ(p), the uniform pre-interpolant for ψ(p, r), such that
(a) IPCχ(p) → ψ(p, r),
(b) For any ϕ(p, q) where q and p, r are disjoint, if IPC ϕ(p, q) → ψ(p, r),

then IPCϕ(p, q) → χ(p).

This theorem is proved in [14] by a proof-theoretical method and in [8] by the
bisimulation quantifier method. In accordance with the latter we write ∃q ϕ(p, q)
for the post-interpolant and ∀r ψ(p, r) for the pre-interpolant.

For the positive fragment, we first treat the post-interpolant. There is a
complication in the case of the pre-interpolant.

Theorem 10 (Uniform Interpolation Theorem for the positive frag-
ment of IPC, post-interpolant)

For any positive formula ϕ(p, q) in which q is not a member of p, there is a
positive formula θ(p) such that

1. IPC ϕ(p, q) → θ(p),
2. For any positive ψ(p, r) where r and p, q are disjoint, if IPC ϕ(p, q) →

ψ(p, r), then IPC θ(p) → ψ(p, r). Moreover, θ(p) is (∃q ϕ)+, where ∃q ϕ is
the uniform post-interpolant for ϕ in full IPC.

Proof. 1. By Theorem 9.1(a), IPC ϕ(p, q) → ∃q ϕ(p, q). As ϕ(p, q) is positive,
by Theorem 7.6, IPC ϕ(p, q) → (∃q ϕ(p, q))+. Note that, since ϕ(p, q) is
satisfiable (it is positive!), (∃q ϕ(p, q))+ cannot be ⊥ and hence is positive.

2. By Theorem 9.1(b), IPC ∃q ϕ(p, q)→ ψ(p, r). As ψ(p, r) is positive, by
Theorem 7.6, IPC (∃q ϕ(p, q))+→ ψ(p, r). ��

This result is not trivial. The post-interpolant of (p → q) → p in full IPC is ¬¬p.
In the positive fragment it is (¬¬p)+ = �.

For the pre-interpolant the situation is more complex. For example, ∀r. p →
r is ¬p and that is (up to equivalence) the only formula in p without r to
imply p → r, and therefore no pre-interpolant for p → r exists in the positive
fragment. Actually, this is not a real surprise since in classical propositional
logic the situation is the same. However, in a way this is the only failure of the
theorem; pre-interpolants exist as long as we just consider positive formulas that
are implied by at least one positive one not containing the quantified variables.
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Theorem 11. (Uniform Interpolation Theorem for the positive frag-
ment of IPC, pre-interpolant)

For any positive formula ψ(p, r) in which r is not in p, one of the following
two cases holds:

1. There is a positive formula θ(p), the uniform pre-interpolant for ψ(p, r), such
that
(a) IPC θ(p) → ψ(p, r),
(b) For any ϕ(p, q) where q and p, r are disjoint, if IPC ϕ(p, q) → ψ(p, r),

then IPCϕ(p, q) → θ(p). Moreover, θ(p) is (∀r ψ)+.
2. For any positive θ(p, q) where q and p, r are disjoint, �IPC θ(p, q) → ψ(p, r).

Proof. 1(a). By Theorem 9.2(a), IPC ∀r ψ(p, r) → ψ(p, r). As ψ(p, r) is positive,
by Theorem 7.6, IPC (∀r ψ(p, r))+→ ψ(p, r). The case that (∀r ψ(p, r))+ =
⊥ will be treated under 2. In the other cases, we are done.

1(b). By Theorem 9.2(b), IPC ϕ(p, q) → ∀r ψ(p, r). As ϕ(p, q) is positive, by
Theorem 7.6, IPCϕ(p, q) → (∀r ψ(p, r))+.

2. If IPC θ(p, q)→ ψ(p, r), then, by 1(b), IPC θ(p, q)→ (∀r ψ(p, r))+. This
means that, if (∀r ψ(p, r))+ = ⊥, θ(p, q) cannot be positive, since positive
formulas are satisfiable. ��

Again, the result is not trivial. The pre-interpolant of ((p → q) → p) → p in the
full logic is ¬¬p → p. In the positive fragment it is (¬¬p → p)+ = p. Uniform
interpolation for MPC immediately follows.

Corollary 1 (Uniform Interpolation Theorem for MPC)

1. For any formula ϕ(p, q) of MPC in which q is not a member of p, and p, q may
contain f , MPCϕ(p, q)→ (∃q ϕ(p, q))+, and for any positive ψ(p, r) where r
and p, q are disjoint, if MPCϕ(p, q) → ψ(p, r), then
MPC (∃q ϕ(p, q))+→ ψ(p, r).

2. For MPC-formula ψ(p, r) in which r is not a member of p one of the following
two cases holds:
(a) (∀rϕ(p, r))+ is an MPC-formula, MPC (∀r ϕ(p, r))+ → ψ(p, r), and for

any ϕ(p, q) where q and p, r are disjoint, if MPCϕ(p, q) → ψ(p, r), then
MPC ϕ(p, q) → (∀r ψ(p, r))+.

(b) For any MPC-formula ϕ(p, q) where q and p, r are disjoint, �MPC ϕ(p, q)
→ ψ(p, r).

This means that in MPC the uniform post-interpolant exists for any formula,
and the uniform pre-interpolant exists for any formula that is implied by at
least one formula with the right variables. The result stands if instead of the
formulation of the syntax with the additional variable f one chooses to formulate
MPC with ¬. In itself this is not remarkable, but there is a stark contrast with
full IPC, in which as we have seen, uniform interpolants of positive formulas may
need ¬.

We do not obtain uniform interpolation for the positive fragment of IQC since
it does not even hold for IQC itself (see e.g. [20]). But simple interpolation for
the positive fragment of IQC immediately follows from the usual proofs of simple
interpolation in IQC itself.
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5 Relationship with KC and Other Logics

5.1 Propositional Case

We consider intermediate propositional and predicate logics, logics between IPC
and classical logic. We assume they are given by axiomatizations plus the rules
of substitution and modus ponens. We first show that to derive positive formulas
just positive substitutions in the axioms and the +-operation nearly suffice. This
is the basic theorem of this section.

Theorem 12. If L is an intermediate logic, ϕ is positive and L  ϕ, then there
are axioms α0(p0, . . . , pn0), . . . , αk(p0, . . . , pnk

) of L and formulas ψ00, . . . , ψ0n0 ,
. . . , ψk0, . . . , ψknk

, which are positive or ⊥, such that ϕ is derivable in IPC, resp.
IQC, from (α0(ψ00, . . . , ψ0n0))

+, . . . , (αk(ψk0, . . . , ψknk
))+.

Proof. If L  ϕ, then there are axioms α0(p0, . . . , pn0), . . . , αk(p0, . . . , pnk
) of L

and formulas θ00, . . . , θ0n0 , . . . , θk0, . . . , θknk
such that ϕ is derivable in IPC or

IQC from α0(θ00, . . . , θ0n0), . . . , αk(θk0, . . . , θknk
). By Theorem 7.7, ϕ is deriv-

able in IPC or IQC from (α0(θ00, . . . , θ0n0))
+, . . . , (αk(θk0, . . . , θknk

))+. Then, by
Theorem 7.3, ϕ is derivable in IPC or IQC from (α0(θ+00, . . . , θ+0n0

))+, . . . , (αk(θ+k0,
. . . , θ+knk

))+. Now ψ00, . . . , ψ0n0 , . . . , ψk0, . . . , ψknk
can be taken to be θ+00, . . . ,

θ+0n0
, . . . , θ+k0, . . . , θ+knk

. ��

The reader should note that in the above proof the formulas (α0(θ+00, . . . ,
θ+0n0

))+, . . . , (αk(θ+k0, . . . , θ
+
knk

))+ may not be derivable in L itself. Nevertheless,
the theorem turns out to be very useful.

It is well-known that KC is conservative over the positive fragment of IPC
(see [2]). This now follows directly.

Theorem 13. If ϕ is positive, then IPC ϕ ⇐⇒ KC ϕ.

Proof. Let us just prove the non-trivial direction. Assume KC ϕ and ϕ is pos-
itive. Then, by Theorem12, ϕ is a consequence in IPC of some formulas of the
form (¬ψ ∨ ¬¬ψ)+ with ψ positive or ⊥. Since (¬ψ ∨ ¬¬ψ)+ ∼ ⊥ ∨ � ∼ �
or ∼ � ∨ ⊥ ∼ � (depending on whether ψ is positive or ⊥) , this implies that
IPC ϕ. ��
An immediate consequence is:

Corollary 2. If ϕ and ψ are positive and KC ϕ ∨ ψ, then KC ϕ or KC ψ.

By a slightly more complicated argument, using that KC can be axiomatized by
¬p ∨ ¬¬p for all atoms p, uniform interpolation for KC follows.

Theorem 13 can be generalized in three directions. In the first place, Jankov’s
Theorem [11] states that KC is the strongest intermediate logic with this prop-
erty. A frame-theoretic proof was given in [3], followed by a simpler approach
in [18]. Secondly, there are generalizations to predicate logic, which we will dis-
cuss in the next subsection. Finally, as discussed to a certain extent in [3], the
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corollary can be strengthened by considering the relationship of KC with other
intermediate logics. It turns out that for many such logics Theorem13 gener-
alizes. So, we turn to the question for which intermediate logics L, KC +L is
conservative over L with respect to positive formulas. The next example shows
that this is not so for all such logics.

Example 1. BD2 + KC is not conservative over the positive fragment of BD2, the
logic of the frames bounded to depth 2 (see [2])2.

Proof. The logic BD2 is often axiomatized by p ∨ (p → q ∨ ¬q), but can be
axiomatized positively e.g. by ((p → (((q → r) → q) → q)) → p) → p. BD2 + KC
contains LC, Dummett’s logic. This logic is axiomatized by the positive for-
mula (p → q) ∨ (q → p) (expressing linearity of frames), which is not provable
in BD2. ��
Definition 7. An intermediate logic L has the + -property, if, whenever L ϕ,
also L ϕ+.

Theorem 14. If L is an intermediate propositional logic axiomatized over IPC
that has the +-property and ϕ is positive, then IPC+L ϕ iff KC+L ϕ.

Proof. Assume KC+L ϕ and ϕ is positive. Then, by Theorem12, ϕ is a conse-
quence in IPC from some formulas of the form (¬ψ ∨ ¬¬ψ)+ and some formulas
α+
0 , . . . , α

+
k , where α0, . . . , αk are L-axioms. The formulas (¬ψ ∨ ¬¬ψ)+ can be

treated as in the proof of Theorem13. The L-axioms are provable in L, and by
the +-property, so are their +-formulas. ��
Theorem 15. If L is an intermediate propositional logic that is complete with
respect to a class of frames that is closed under the operation that turns a frame
into its top frame, then L has the + -property.

Proof. Repeat the proof of Theorem7.1. ��
The last two theorems immediately lead to

Theorem 16. If L is an intermediate propositional logic that is complete with
respect to a class of frames that is closed under the operation that turns a frame
into its top frame, then, for positive ϕ, IPC+L ϕ iff KC+L ϕ.

To give a semantic characterization of the +-property of logics we need descrip-
tive frames. First we give a lemma.

Lemma 4. If F= 〈W,R,P〉 is a descriptive frame, then so is F+ = 〈W ∪{t}, R+,
P+〉, if P+ = {X ∪ {t} |X ∈ P} ∪ {∅}.
Proof. Straightforward. ��
A semantic characterization of the + -operation for intermediate logics can then
be given as follows (simultaneously strengthening Theorem 15).
2 A Kripke frame is of depth n if the largest chain contains n nodes.
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Theorem 17. An intermediate logic L has the + -property iff, for each descrip-
tive frame F of L, F+ is a descriptive L-frame as well.

Proof. ⇐: Again like Theorem7.1.
⇒: Assume F is a descriptive L-frame, but F+ is not. Then, for some ϕ, L ϕ

but there exists a model N on F+ that falsifies ϕ. If this is not a top model, then
some propositional variables are false in the top node. This means that they are
false in the whole model and can be replaced by ⊥ without influencing the truth
value of any relevant formula. So, the formula ϕ⊥ resulting from the substitution
of ⊥ for the propositional variables in question is still falsified. Moreover, ϕ⊥ is
provable in L as well.

So, w.l.o.g. we can assume that N is a top model M+ falsifying ϕ. Then M+

falsifies ϕ+ as well, and hence also M falsifies ϕ+. But that means that �L ϕ+,
and hence that L does not have the +-property. ��
Unfortunately, the theorem has not yet been of much practical value to determine
for which logics L, IPC+L and KC+L prove the same positive formulas. But it
does enable us to see that the +-property is not necessary.

Example 2. The finite Gödel-Dummett logics LCn with linear orders of length
n as their characteristic frames, extend KC, and therefore satisfy LCn  ϕ ⇔
KC+LCn  ϕ for even all formulas. But by Theorem17, they lack the +-property
because, clearly, their class of frames is not closed under the +-operation.

We could conclude here by applying Theorem15 that the tree logics Tn of [6] do
satisfy the +-property, but we prefer to give a more satisfying proof applicable
to first-order logic in the next section.

5.2 First Order Case

Let QKC be IQC plus KC. Theorem 13 can be directly, with the same proof,
generalized to

Theorem 18. If ϕ is positive, then IQC ϕ iff QKC ϕ.

This can further be strengthened by adding DNS (Double Negation Shift), axiom-
atized by ∀x¬¬Ax → ¬¬∀xAx, to QKC. Just as QKC the logic DNS is always
valid on top models, and, in the proof of Theorem13, applying the +-operation
in the same way turns this axiom into � when a positive formula or ⊥ is sub-
stituted for Ax. So, we get

Theorem 19. If ϕ is positive, then IQC ϕ ⇐⇒ QKC+DNS ϕ.

In predicate logic we have of course the same propositional intermediate logics
with positive axioms to strengthen IQC. Let us take a look at the Tn.

Lemma 5. IQC + Tn has the +-property.
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Proof. We can apply Theorem 12. It is easy to check that the form of the Tn-
axioms,

∧n
i=0((pi → ∨

j �=i pj) → ∨
j �=i pj) → ∨n

i=0 pi, is such that substitution
of ⊥ for an atom in one of these axioms gives a formula provable in IPC itself. ��
We can now immediately conclude:

Corollary 3. QKC + Tn is conservative over the positive fragment of IQC + Tn.

Proof. Assisted by the proof of the last lemma we can follow the line of the proof
of Theorem 13. ��
There is another very important logic with positive axioms, the logic CD, axiom-
atized by ∀x(A ∨ B(x)) → A ∨ ∀xB(x) and known to be complete with respect
to Kripke models with constant domains (see [7]). Results apply here because,
if M |= CD, then M+ |= CD, since the domain of the top point is the union of
all the domains of M, and thus the same domain as the other worlds of M.

Corollary 4. Assume ϕ is positive. Then IQC+CD ϕ ⇐⇒ QKC+CD+DNS ϕ.

The same results as for IQC + CD hold for the logic axiomatized by ∀x, y
(Px → Py), the logic for constant domains consisting of a single element. Actu-
ally, this is not an intermediate logic of course, it is not contained in classical
logic, and more properly called a superintuitionistic logic.
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