7 research outputs found

    Porcine intestinal glycosphingolipids recognized by F6-fimbriated enterotoxigenic Escherichia coli

    Get PDF
    One important virulence factor of enterotoxigenic Escherichia coli is their ability to adhere via fimbrial adhesins to specific receptors located on the intestinal mucosa. Here, the potential glycosphingolipid receptors of enterotoxigenic F6-fimbriated E. coli were examined by binding of purified F6 fimbriae, and F6-expressing bacteria, to glycosphingolipids on thin-layer chromatograms. When intestinal mucosal non-acid glycosphingolipids from single pigs were assayed for F6 binding capacity, a selective interaction with two glycosphingolipids was observed. The binding-active glycosphingolipids were isolated and characterized as lactotriaosylceramide (GlcNAc beta 3Gal beta 4Glc beta 1Cer) and lactotetraosylceramide (Gal beta 3GlcNAc beta 3Gal beta 4Glc beta 1Cer). Further binding assays using a panel of reference glycosphingolipids showed a specific interaction between the F6 fimbriae and a number of neolacto core chain (Gal beta 4GlcNAc) glycosphingolipids. In addition, an occasional binding of the F6 fimbriae to sulfatide, galactosylceramide, lactosylceramide with phytosphingosine and/or hydroxy fatty acids, isoglobotriaosylceramide, gangliotriaosylceramide, and gangliotetraosylceramide was obtained. From the results we conclude that lactotriaosylceramide and lactotetraosylceramide are major porcine intestinal receptors for F6-fimbriated E. coli

    Glycosphingolipids Recognized by Acinetobacter baumannii

    Get PDF
    Acinetobacter baumannii is an opportunistic bacterial pathogen associated with hospital-acquired infections, including pneumonia, meningitis, bacteremia, urinary tract infection, and wound infections. Recognition of host cell surface carbohydrates plays a crucial role in adhesion and enables microbes to colonize different host niches. Here the potential glycosphingolipid receptors of A. baumannii were examined by binding of S-35-labeled bacteria to glycosphingolipids on thin-layer chromatograms. Thereby a selective interaction with two non-acid glycosphingolipids of human and rabbit small intestine was found. The binding-active glycosphingolipids were isolated and, on the basis of mass spectrometry, identified as neolactotetraosylceramide (Gal beta 4GlcNAc beta 3Gal beta 4Glc beta 1Cer) and lactotetraosylceramide (Gal beta 3GlcNAc beta 3Gal beta 4Glc beta 1Cer). Further binding assays using reference glycosphingolipids showed that A. baumannii also bound to lactotriaosylceramide (GlcNAc beta 3Gal beta 4Glc beta 1Cer) demonstrating that GlcNAc was the basic element recognized. In addition, the bacteria occasionally bound to galactosylceramide, lactosylceramide with phytosphingosine and/or hydroxy fatty acids, isoglobotriaosylceramide, gangliotriaosylceramide, and gangliotetraosylceramide, in analogy with binding patterns that previously have been described for other bacteria classified as "lactosylceramide-binding". Finally, by isolation and characterization of glycosphingolipids from human skin, the presence of neolactotetraosylceramide was demonstrated in this A. baumannii target tissue

    Helicobacter pylori SabA binding gangliosides of human stomach

    No full text
    Adhesion of Helicobacter pylori to the gastric mucosa is a prerequisite for the pathogenesis of H. pylori related diseases. In this study, we investigated the ganglioside composition of human stomach as the target for attachment mediated by H. pylori SabA (sialic acid binding adhesin). Acid glycosphingolipids were isolated from human stomach and separated into subfractions, which were characterized by mass spectrometry and by binding of antibodies, bacteria, and Solanum tuberosum lectin. H. pylori SabA binding gangliosides were characterized as Neu5Acα3-neolactohexaosylceramide and Neu5Acα3-neolactooctaosylceramide, while the other acid human stomach glycosphingolipids characterized (sulfatide and the gangliosides GM3, GD3, GM1, Neu5Acα3-neolactotetraosylceramide, GD1a and GD1b) were not recognized by the bacteria. Defining H. pylori binding glycosphingolipids of the human gastric mucosa will be useful to specifically target this microbe-host interaction for therapeutic intervention

    Glycosphingolipids Recognized by Acinetobacter baumannii

    No full text
    Acinetobacter baumannii is an opportunistic bacterial pathogen associated with hospital-acquired infections, including pneumonia, meningitis, bacteremia, urinary tract infection, and wound infections. Recognition of host cell surface carbohydrates plays a crucial role in adhesion and enables microbes to colonize different host niches. Here the potential glycosphingolipid receptors of A. baumannii were examined by binding of 35S-labeled bacteria to glycosphingolipids on thin-layer chromatograms. Thereby a selective interaction with two non-acid glycosphingolipids of human and rabbit small intestine was found. The binding-active glycosphingolipids were isolated and, on the basis of mass spectrometry, identified as neolactotetraosylceramide (Galβ4GlcNAcβ3Galβ4Glcβ1Cer) and lactotetraosylceramide (Galβ3GlcNAcβ3Galβ4Glcβ1Cer). Further binding assays using reference glycosphingolipids showed that A. baumannii also bound to lactotriaosylceramide (GlcNAcβ3Galβ4Glcβ1Cer) demonstrating that GlcNAc was the basic element recognized. In addition, the bacteria occasionally bound to galactosylceramide, lactosylceramide with phytosphingosine and/or hydroxy fatty acids, isoglobotriaosylceramide, gangliotriaosylceramide, and gangliotetraosylceramide, in analogy with binding patterns that previously have been described for other bacteria classified as “lactosylceramide-binding”. Finally, by isolation and characterization of glycosphingolipids from human skin, the presence of neolactotetraosylceramide was demonstrated in this A. baumannii target tissue

    The binding mechanism of the virulence factor Streptococcus suis adhesin P subtype to globotetraosylceramide is associated with systemic disease

    Get PDF
    Streptococcus suis is part of the pig commensal microbiome but strains can also be pathogenic, causing pneumonia and meningitis in pigs as well as zoonotic meningitis. According to genomic analysis, S. suis is divided into asymptomatic carriage, respiratory and systemic strains with distinct genomic signatures. Because the strategies to target pathogenic S. suis are limited, new therapeutic approaches are needed. The virulence factor S. suis adhesin P (SadP) recognizes the galabiose Gal alpha 1-4Gal-oligosaccharide. Based on its oligosaccharide fine specificity, SadP can be divided into subtypes P-N and P-O. We show here that subtype P-N is distributed in the systemic strains causing meningitis, whereas type P-O is found in asymptomatic carriage and respiratory strains. Both types of SadP are shown to predominantly bind to pig lung globotriaosylceramide (Gb3). However, SadP adhesin from systemic subtype P-N strains also binds to globotetraosylceramide (Gb4). Mutagenesis studies of the galabiose-binding domain of type P-N SadP adhesin showed that the amino acid asparagine 285, which is replaced by an aspartate residue in type P-O SadP, was required for binding to Gb4 and, strikingly, was also required for interaction with the glycomimetic inhibitor phenylurea-galabiose. Molecular dynamics simulations provided insight into the role of Asn-285 for Gb4 and phenylurea-galabiose binding, suggesting additional hydrogen bonding to terminal GalNAc of Gb4 and the urea group. Thus, the Asn-285-mediated molecular mechanism of type P-N SadP binding to Gb4 could be used to selectively target S. suis in systemic disease without interfering with commensal strains, opening up new avenues for interventional strategies against this pathogen.Peer reviewe
    corecore