634 research outputs found

    The internationalisation of the Spanish SME sector

    Get PDF
    As part of a wider research program, we analysed the theoretical framework and the recent developments of the process of internationalisation (transnationalisation) of the small- and medium-sized enterprises in Spain. The paper highlights the main trends and barriers of this internationalisation process. Methodology included document analyses, interviews, and the analyses of statistical databases

    Cutting blade dentitions in squaliform sharks form by modification of inherited alternate tooth ordering patterns

    Get PDF
    The squaliform sharks represent one of the most speciose shark clades. Many adult squaliforms have blade-like teeth, either on both jaws or restricted to the lower jaw, forming a continuous, serrated blade along the jaw margin. These teeth are replaced as a single unit and successor teeth lack the alternate arrangement present in other elasmobranchs. Micro-CT scans of embryos of squaliforms and a related outgroup (Pristiophoridae) revealed that the squaliform dentition pattern represents a highly modified version of tooth replacement seen in other clades. Teeth of Squalus embryos are arranged in an alternate pattern, with successive tooth rows containing additional teeth added proximally. Asynchronous timing of tooth production along the jaw and tooth loss prior to birth cause teeth to align in oblique sets containing teeth from subsequent rows; these become parallel to the jaw margin during ontogeny, so that adult Squalus has functional tooth rows comprising obliquely stacked teeth of consecutive developmental rows. In more strongly heterodont squaliforms, initial embryonic lower teeth develop into the oblique functional sets seen in adult Squalus, with no requirement to form, and subsequently lose, teeth arranged in an initial alternate pattern

    Ecological impact of the end-Cretaceous extinction on lamniform sharks

    Get PDF
    Lamniform sharks are apex marine predators undergoing dramatic local and regional decline worldwide, with consequences for marine ecosystems that are difficult to predict. Through their long history, lamniform sharks have faced widespread extinction, and understanding those ‘natural experiments’ may help constrain predictions, placing the current crisis in evolutionary context. Here we show, using novel morphometric analyses of fossil shark teeth, that the end-Cretaceous extinction of many sharks had major ecological consequences. Post-extinction ecosystems supported lower diversity and disparity of lamniforms, and were dominated by significantly smaller sharks with slimmer, smoother and less robust teeth. Tooth shape is intimately associated with ecology, feeding and prey type, and by integrating data from extant sharks we show that latest Cretaceous sharks occupied similar niches to modern lamniforms, implying similar ecosystem structure and function. By comparison, species in the depauperate post-extinction community occupied niches most similar to those of juvenile sand tigers (Carcharias taurus). Our data show that quantitative tooth morphometrics can distinguish lamniform sharks due to dietary differences, providing critical insights into ecological consequences of past extinction episodes

    Early development of rostrum saw-teeth in a fossil ray tests classical theories of the evolution of vertebrate dentitions

    Get PDF
    In classical theory, teeth of vertebrate dentitions evolved from co-option of external skin denticles into the oral cavity. This hypothesis predicts that ordered tooth arrangement and regulated replacement in the oral dentition were also derived from skin denticles. The fossil batoid ray Schizorhiza stromeri (Chondrichthyes; Cretaceous) provides a test of this theory. Schizorhiza preserves an extended cartilaginous rostrum with closely spaced, alternating saw-teeth, different from sawfish and sawsharks today. Multiple replacement teeth reveal unique new data from micro-CT scanning, showing how the 'cone-in-cone' series of ordered saw-teeth sets arrange themselves developmentally, to become enclosed by the roots of pre-existing saw-teeth. At the rostrum tip, newly developing saw-teeth are present, as mineralized crown tips within a vascular, cartilaginous furrow; these reorient via two 90° rotations then relocate laterally between previously formed roots. Saw-tooth replacement slows mid-rostrum where fewer saw-teeth are regenerated. These exceptional developmental data reveal regulated order for serial self-renewal, maintaining the saw edge with ever-increasing saw-tooth size. This mimics tooth replacement in chondrichthyans, but differs in the crown reorientation and their enclosure directly between roots of predecessor saw-teeth. Schizorhiza saw-tooth development is decoupled from the jaw teeth and their replacement, dependent on a dental lamina. This highly specialized rostral saw, derived from diversification of skin denticles, is distinct from the dentition and demonstrates the potential developmental plasticity of skin denticles

    Mineralization of the Callorhinchus Vertebral Column (Holocephali; Chondrichthyes)

    Get PDF
    Members of the Chondrichthyes (Elasmobranchii and Holocephali) are distinguished by their largely cartilaginous endoskeletons, which comprise an uncalcified core overlain by a mineralized layer; in the Elasmobranchii (sharks, skates, rays) most of this mineralization takes the form of calcified polygonal tiles known as tesserae. In recent years, these skeletal tissues have been described in ever increasing detail in sharks and rays, but those of Holocephali (chimaeroids) have been less well-studied, with conflicting accounts as to whether or not tesserae are present. During embryonic ontogeny in holocephalans, cervical vertebrae fuse to form a structure called the synarcual. The synarcual mineralizes early and progressively, anteroposteriorly and dorsoventrally, and therefore presents a good skeletal structure in which to observe mineralized tissues in this group. Here, we describe the development and mineralization of the synarcual in an adult and stage 36 elephant shark embryo (Callorhinchus milii). Small, discrete, but irregular blocks of cortical mineralization are present in stage 36, similar to what has been described recently in embryos of other chimaeroid taxa such as Hydrolagus, while in Callorhinchus adults, the blocks of mineralization are more irregular, but remain small. This differs from fossil members of the holocephalan crown group (Edaphodon), as well as from stem group holocephalans (e.g., Symmorida, Helodus, Iniopterygiformes), where tesserae are notably larger than in Callorhinchus and show similarities to elasmobranch tesserae, for example with respect to polygonal shape

    Study of the p p -> p p pi+ pi- Reaction in the Low-Energy Tail of the Roper Resonance

    Full text link
    Exclusive measurements of the p p -> p p pi+ pi- reaction have been carried out at Tp = 775 MeV at CELSIUS using the PROMICE/WASA setup. Together with data obtained at lower energy they point to a dominance of the Roper excitation in this process. From the observed interference of its decay routes N* -> N sigma and N* -> Delta pi -> N sigma their energy-dependent relative branching ratio is determined

    Bricks, trusses and superstructures: strategies for skeletal reinforcement in batted fishes (rays and skates)

    Get PDF
    Crushing and eating hard prey (durophagy) is mechanically demanding. The cartilage jaws of durophagous stingrays are known to be reinforced relative to non-durophagous relatives, with a thickened external cortex of mineralized blocks (tesserae), reinforcing struts inside the jaw (trabeculae), and pavement-like dentition. These strategies for skeletal strengthening against durophagy, however, are largely understood only from myliobatiform stingrays, although a hard prey diet has evolved multiple times in batoid fishes (rays, skates, guitarfishes). We perform a quantitative analysis of micro-CT data, describing jaw strengthening mechanisms in Rhina ancylostoma (Bowmouth Guitarfish) and Rhynchobatus australiae (White-spotted Wedgefish), durophagous members of the Rhinopristiformes, the sister taxon to Myliobatiformes. Both species possess trabeculae, more numerous and densely packed in Rhina, albeit simpler structurally than those in stingrays like Aetobatus and Rhinoptera. Rhina and Rhynchobatus exhibit impressively thickened jaw cortices, often involving >10 tesseral layers, most pronounced in regions where dentition is thickest, particularly in Rhynchobatus. Age series of both species illustrate that tesserae increase in size during growth, with enlarged and irregular tesserae associated with the jaws’ oral surface in larger (older) individuals of both species, perhaps a feature of ageing. Unlike the flattened teeth of durophagous myliobatiform stingrays, both rhinopristiform species have oddly undulating dentitions, comprised of pebble-like teeth interlocked to form compound “meta-teeth” (large spheroidal structures involving multiple teeth). This is particularly striking in Rhina, where the upper/lower occlusal surfaces are mirrored undulations, fitting together like rounded woodworking finger-joints. Trabeculae were previously thought to have arisen twice independently in Batoidea; our results show they are more widespread among batoid groups than previously appreciated, albeit apparently absent in the phylogenetically basal Rajiformes. Comparisons with several other durophagous and non-durophagous species illustrate that batoid skeletal reinforcement architectures are modular: trabeculae can be variously oriented and are dominant in some species (e.g. Rhina, Aetobatus), whereas cortical thickening is more significant in others (e.g. Rhynchobatus), or both reinforcing features can be lacking (e.g. Raja, Urobatis). We discuss interactions and implications of character states, framing a classification scheme for exploring cartilage structure evolution in the cartilaginous fishes

    Holocephalan (Chondrichthyes) dental plates with hypermineralized dentine as a substitute for missing teeth through developmental plasticity

    Get PDF
    All extant holocephalans (Chimaeroidei) have lost the ability to make individual teeth, as tooth germs are neither part of the embryonic development of the dental plates, nor of their continuous growth. Instead, a hypermineralized dentine with a unique mineral, whitlockin, is specifically distributed within a dentine framework into structures that give the dental plates their distinctive, species-specific morphology. Control of the regulation of this distribution must be cellular, with a dental epithelium initiating the first outer dentine, and via contact with ectomesenchymal tissue as the only embryonic cell type that can make dentine. Chimaeroids have three pairs of dental plates within their mouth, two in the upper jaw and one in the lower. In the genera Chimaera, Hydrolagus and Harriotta, the morphology and distribution of this whitlockin within each dental plate differs both between different plates in the same species and between species. Whitlockin structures include ovoids, rods and tritoral pads, with substantial developmental changes between these. For example, rods appear before the ovoids, and result from a change in the surrounding trabecular dentine. In Harriotta, ovoids form separately from the tritoral pads, but also contribute to tritor development, while in Chimaera and Hydrolagus, tritoral This article is protected by copyright. All rights reserved. pads develop from rods that later are perforated to accommodate the vasculature. Nevertheless, the position of these structures, secreted by the specialized odontoblasts (whitloblasts), appears highly regulated in all three species. These distinct morphologies are established at the aboral margin of the dental plate, with proposed involvement of the outer dentine. We observe that this outer layer forms into serially added lingual ridges, occurring on the anterior plate only. We propose that positional, structural specificity must be contained within the ectomesenchymal populations, as stem cells below the dental epithelium, and a coincidental occurrence of each lingual, serial ridge with the whitlockin structures that contribute to the wear resistant oral surface

    INTERLAYER COUPLING AND THE METAL-INSULATOR TRANSITION IN Pr-SUBSTITUTED Bi(2)Sr(2)CaCu(2)O(8+y)

    Full text link
    Substitution of rare-earth ions for Ca in Bi2Sr2CaCu2O8+y is known to cause a metal-insulator transition. Using resonant photoemission we study how this chemical substitution affects the electronic structure of the material. For the partial Cu-density of states at E_F and in the region of the valence band we observe no significant difference between a pure superconducting sample and an insulating sample with 60% Pr for Ca. This suggests that the states responsible for superconductivity are predomi- nately O-states. The partial Pr-4f density of states was extracted utilizing the Super- Koster-Kronig Pr 4d-4f resonance. It consists of a single peak at 1.36eV binding energy. The peak shows a strongly assymetric Doniach-Sunjic line- shape indicating the presence of a continuum of electronic states with sharp cut off at E_F even in this insulating sample. This finding excludes a bandgap in the insulating sample and supports the existance of a mobility gap caused by spatial localization of the carriers. The presence of such carriers at the Pr-site, between the CuO_2 planes shows that the electronic structure is not purely 2-dimensional but that there is a finite interlayer coupling. The resonance enhancement of the photoemission cross section, at the Pr-4d threshold, was studied for the Pr-4f and for Cu-states. Both the Pr-4f and the Cu-states show a Fano-like resonance. This resonance of Cu-states with Pr-states is another indication of coupling between the the Pr-states and those in the CuO_2 plane. Because of the statistical distribution of the Pr-ions this coupling leads to a non-periodic potential for the states in the CuO_2 plane which can lead to localization and thus to the observed metal-insulator transition.Comment: Gziped uuencoded postscript file including 7 figures Scheduled for publication in Physical Review B, May 1, 1995
    corecore