11,221 research outputs found

    Financial ``Anti-Bubbles'': Log-Periodicity in Gold and Nikkei collapses

    Full text link
    We propose that imitation between traders and their herding behaviour not only lead to speculative bubbles with accelerating over-valuations of financial markets possibly followed by crashes, but also to ``anti-bubbles'' with decelerating market devaluations following all-time highs. For this, we propose a simple market dynamics model in which the demand decreases slowly with barriers that progressively quench in, leading to a power law decay of the market price decorated by decelerating log-periodic oscillations. We document this behaviour on the Japanese Nikkei stock index from 1990 to present and on the Gold future prices after 1980, both after their all-time highs. We perform simultaneously a parametric and non-parametric analysis that are fully consistent with each other. We extend the parametric approach to the next order of perturbation, comparing the log-periodic fits with one, two and three log-frequencies, the latter one providing a prediction for the general trend in the coming years. The non-parametric power spectrum analysis shows the existence of log-periodicity with high statistical significance, with a prefered scale ratio of λ3.5\lambda \approx 3.5 for the Nikkei index λ1.9\lambda \approx 1.9 for the Gold future prices, comparable to the values obtained for speculative bubbles leading to crashes.Comment: 14 pages with 4 figure

    Stochastics theory of log-periodic patterns

    Full text link
    We introduce an analytical model based on birth-death clustering processes to help understanding the empirical log-periodic corrections to power-law scaling and the finite-time singularity as reported in several domains including rupture, earthquakes, world population and financial systems. In our stochastics theory log-periodicities are a consequence of transient clusters induced by an entropy-like term that may reflect the amount of cooperative information carried by the state of a large system of different species. The clustering completion rates for the system are assumed to be given by a simple linear death process. The singularity at t_{o} is derived in terms of birth-death clustering coefficients.Comment: LaTeX, 1 ps figure - To appear J. Phys. A: Math & Ge

    Three-body properties of low-lying 12^{12}Be resonances

    Get PDF
    We compute the three-body structure of the lowest resonances of 12^{12}Be considered as two neutrons around an inert 10^{10}Be core. This is an extension of the bound state calculations of 12^{12}Be into the continuum spectrum. We investigate the lowest resonances of angular momenta and parities, 0±0^{\pm}, 11^{-} and 2+2^{+}. Surprisingly enough, they all are naturally occurring in the three-body model. We calculate bulk structure dominated by small distance properties as well as decays determined by the asymptotic large-distance structure. Both 0+0^{+} and 2+2^{+} have two-body 10^{10}Be-neutron d-wave structure, while 11^{-} has an even mixture of pp and d-waves. The corresponding relative neutron-neutron partial waves are distributed among ss, pp, and d-waves. The branching ratios show different mixtures of one-neutron emission, three-body direct, and sequential decays. We argue for spin and parities, 0+0^{+}, 11^{-} and 2+2^{+}, to the resonances at 0.89, 2.03, 5.13, respectively. The computed structures are in agreement with existing reaction measurements.Comment: To be published in Physical Review

    Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration

    Get PDF
    We present simulations of the non-linear evolution of streaming instabilities in protoplanetary disks. The two components of the disk, gas treated with grid hydrodynamics and solids treated as superparticles, are mutually coupled by drag forces. We find that the initially laminar equilibrium flow spontaneously develops into turbulence in our unstratified local model. Marginally coupled solids (that couple to the gas on a Keplerian time-scale) trigger an upward cascade to large particle clumps with peak overdensities above 100. The clumps evolve dynamically by losing material downstream to the radial drift flow while receiving recycled material from upstream. Smaller, more tightly coupled solids produce weaker turbulence with more transient overdensities on smaller length scales. The net inward radial drift is decreased for marginally coupled particles, whereas the tightly coupled particles migrate faster in the saturated turbulent state. The turbulent diffusion of solid particles, measured by their random walk, depends strongly on their stopping time and on the solids-to-gas ratio of the background state, but diffusion is generally modest, particularly for tightly coupled solids. Angular momentum transport is too weak and of the wrong sign to influence stellar accretion. Self-gravity and collisions will be needed to determine the relevance of particle overdensities for planetesimal formation.Comment: Accepted for publication in ApJ (17 pages). Movies of the simulations can be downloaded at http://www.mpia.de/~johansen/research_en.ph

    Terrestrial planets across space and time

    Full text link
    The study of cosmology, galaxy formation and exoplanets has now advanced to a stage where a cosmic inventory of terrestrial planets may be attempted. By coupling semi-analytic models of galaxy formation to a recipe that relates the occurrence of planets to the mass and metallicity of their host stars, we trace the population of terrestrial planets around both solar-mass (FGK type) and lower-mass (M dwarf) stars throughout all of cosmic history. We find that the mean age of terrestrial planets in the local Universe is 7±17\pm{}1 Gyr for FGK hosts and 8±18\pm{}1 Gyr for M dwarfs. We estimate that hot Jupiters have depleted the population of terrestrial planets around FGK stars by no more than 10%\approx 10\%, and that only 10%\approx 10\% of the terrestrial planets at the current epoch are orbiting stars in a metallicity range for which such planets have yet to be confirmed. The typical terrestrial planet in the local Universe is located in a spheroid-dominated galaxy with a total stellar mass comparable to that of the Milky Way. When looking at the inventory of planets throughout the whole observable Universe, we argue for a total of 1×1019\approx 1\times 10^{19} and 5×1020\approx 5\times 10^{20} terrestrial planets around FGK and M stars, respectively. Due to light travel time effects, the terrestrial planets on our past light cone exhibit a mean age of just 1.7±0.21.7\pm 0.2 Gyr. These results are discussed in the context of cosmic habitability, the Copernican principle and searches for extraterrestrial intelligence at cosmological distances.Comment: 11 pages, 8 figures. v.2: Accepted for publication in ApJ. Some changes in quantitative results compared to v.1, mainly due to differences in IMF assumption

    Stock mechanics: predicting recession in S&P500, DJIA, and NASDAQ

    Full text link
    An original method, assuming potential and kinetic energy for prices and conservation of their sum is developed for forecasting exchanges. Connections with power law are shown. Semiempirical applications on S&P500, DJIA, and NASDAQ predict a coming recession in them. An emerging market, Istanbul Stock Exchange index ISE-100 is found involving a potential to continue to rise.Comment: 14 pages, 4 figure

    Log-periodic route to fractal functions

    Full text link
    Log-periodic oscillations have been found to decorate the usual power law behavior found to describe the approach to a critical point, when the continuous scale-invariance symmetry is partially broken into a discrete-scale invariance (DSI) symmetry. We classify the `Weierstrass-type'' solutions of the renormalization group equation F(x)= g(x)+(1/m)F(g x) into two classes characterized by the amplitudes A(n) of the power law series expansion. These two classes are separated by a novel ``critical'' point. Growth processes (DLA), rupture, earthquake and financial crashes seem to be characterized by oscillatory or bounded regular microscopic functions g(x) that lead to a slow power law decay of A(n), giving strong log-periodic amplitudes. In contrast, the regular function g(x) of statistical physics models with ``ferromagnetic''-type interactions at equibrium involves unbound logarithms of polynomials of the control variable that lead to a fast exponential decay of A(n) giving weak log-periodic amplitudes and smoothed observables. These two classes of behavior can be traced back to the existence or abscence of ``antiferromagnetic'' or ``dipolar''-type interactions which, when present, make the Green functions non-monotonous oscillatory and favor spatial modulated patterns.Comment: Latex document of 29 pages + 20 ps figures, addition of a new demonstration of the source of strong log-periodicity and of a justification of the general offered classification, update of reference lis

    A new approach to the inverse problem for current mapping in thin-film superconductors

    Full text link
    A novel mathematical approach has been developed to complete the inversion of the Biot-Savart law in one- and two-dimensional cases from measurements of the perpendicular component of the magnetic field using the well-developed Magneto-Optical Imaging technique. Our approach, especially in the 2D case, is provided in great detail to allow a straightforward implementation as opposed to those found in the literature. Our new approach also refines our previous results for the 1D case [Johansen et al., Phys. Rev. B 54, 16264 (1996)], and streamlines the method developed by Jooss et al. [Physica C 299, 215 (1998)] deemed as the most accurate if compared to that of Roth et al. [J. Appl. Phys. 65, 361 (1989)]. We also verify and streamline the iterative technique, which was developed following Laviano et al. [Supercond. Sci. Technol. 16, 71 (2002)] to account for in-plane magnetic fields caused by the bending of the applied magnetic field due to the demagnetising effect. After testing on magneto-optical images of a high quality YBa2Cu3O7 superconducting thin film, we show that the procedure employed is effective

    Refining Kernels Using Read-Write Modalities

    Full text link
    Physicists agree that large-scale methodologies are an interesting new topic in the field of artificial intelligence, and mathematicians concur. Given the current status of optimal epistemologies, software engineers shockingly desire the synthesis of the UNIVAC computer, which embodies the unproven principles of algorithms. Our focus in this paper is not on whether operating systems and multicast applications are usually incompatible, but rather on describing a robust tool for developing SMPs (Luxurist) [25]
    corecore