307 research outputs found

    Dendritic flux avalanches in superconducting Nb3Sn films

    Full text link
    The penetration of magnetic flux into a thin superconducting film of Nb3Sn with critical temperature 17.8K and critical current density 6MA/cm^2 was visualized using magneto-optical imaging. Below 8 K an avalanche-like flux penetration in form of big and branching dendritic structures was observed in response to increasing perpendicular applied field. When a growing dendritic branch meets a linear defect in the film, several scenarios were observed: the branch can turn and propagate along the defect, continue propagation right through it, or "tunnel" along a flux-filled defect and continue growth from its other end. The avalanches manifest themselves in numerous small and random jumps found in the magnetization curve.Comment: 3 pages, 4 figures, submitted to Cryogenics. Revision: M(H) data adde

    Single vortices observed as they enter NbSe2_2

    Full text link
    We observe single vortices as they penetrate the edge of a superconductor using a high-sensitivity magneto-optical microscope. The vortices leap across a gap near the edge, a distance that decreases with increasing applied field and sample thickness. This behaviour can be explained by the combined effect of the geometrical barrier and bulk pinning.Comment: 2 pages, 1 figure, M2S-Rio proceeding

    Local threshold field for dendritic instability in superconducting MgB2 films

    Full text link
    Using magneto-optical imaging the phenomenon of dendritic flux penetration in superconducting films was studied. Flux dendrites were abruptly formed in a 300 nm thick film of MgB2 by applying a perpendicular magnetic field. Detailed measurements of flux density distributions show that there exists a local threshold field controlling the nucleation and termination of the dendritic growth. At 4 K the local threshold field is close to 12 mT in this sample, where the critical current density is 10^7 A/cm^2. The dendritic instability in thin films is believed to be of thermo-magnetic origin, but the existence of a local threshold field, and its small value are features that distinctly contrast the thermo-magnetic instability (flux jumps) in bulk superconductors.Comment: 6 pages, 6 figures, submitted to Phys. Rev.

    Buckling instability in type-II superconductors with strong pinning

    Full text link
    We predict a novel buckling instability in the critical state of thin type-II superconductors with strong pinning. This elastic instability appears in high perpendicular magnetic fields and may cause an almost periodic series of flux jumps visible in the magnetization curve. As an illustration we apply the obtained criteria to a long rectangular strip.Comment: Submitted to Phys. Rev. Let

    Vortex microavalanches in superconducting Pb thin films

    Full text link
    Local magnetization measurements on 100 nm type-II superconducting Pb thin films show that flux penetration changes qualitatively with temperature. Small flux jumps at the lowest temperatures gradually increase in size, then disappear near T = 0.7Tc. Comparison with other experiments suggests that the avalanches correspond to dendritic flux protrusions. Reproducibility of the first flux jumps in a decreasing magnetic field indicates a role for defect structure in determining avalanches. We also find a temperature-independent final magnetization after flux jumps, analogous to the angle of repose of a sandpile.Comment: 6 pages, 5 figure

    Visualization of Spin Polarized States in Biologically-Produced Ensembles of Ferromagnetic Palladium Nanoparticles

    Get PDF
    We report visualization of spin polarized states in macroscopic ensembles of biologically-produced ferromagnetic palladium nanoparticles using the Faraday effect-based technique of magneto-optical imaging. The ferromagnetic palladium only exists in the form of nanoparticles. Large quantities of palladium nanoparticles may be synthesized via biomineralization from a Pd2+ solution. The ferromagnetic Pd nanoparticles are formed in the periplasmic space of bacteria during the hydrogen-assisted reduction of Pd2+ ions by hydrogenases. The ferromagnetism in Pd comes from itinerant electrons. A high Curie temperature of ferromagnetic palladium, about 200 degrees centigrade above room temperature, would allow for a range of room-temperature magnetic applications. The processes of the isolation of electron spins in separate nanoparticles, spin hopping, spin transport and spin correlations may even form a basis of quantum computing. So far, measurements of the magnetic properties of Pd nanoparticles (PdNP) have been limited by integral techniques such as SQUID magnetometry, magnetic circular dihroism and muon spin rotation spectroscopy ( SR). In the present study, ferromagnetic Pd nanoparticles are characterized using the technique of magneto-optical imaging. This allows visualization of the spin polarization by the variations in the intensity of polarized light. To perform measurements at relatively low magnetic fields, a spin injection from a colossal magnetoresistive material has been used. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3533

    Dendritic flux avalanches in superconducting films

    No full text
    Thermomagnetic instability in general, and dendritic flux avalanches in particular, have attracted considerable attention of both scientists and engineers working on superconductor applications. Though being harmful for the performance of many superconducting devices, the avalanches provide a fruitful playground for experimental and theoretical studies of complex dynamics of the vortex matter. In this paper, we report on the progress in understanding the mechanisms responsible for the development of the giant magnetic avalanches. We review recent results on magneto-optical imaging of the fingering instability in superconducting films and analyze them basing on the recent theoretical model that establishes criteria for onset of the dendritic avalanches

    Enhanced critical current density of YBa2Cu3Ox films grown on Nd1/3Eu1/3Gd1/3Ba2Cu3Ox with nano-undulated surface morphology

    Full text link
    We report a simple and easily controllable method where a nano-undulated surface morphology of Nd1/3Eu1/3Gd1/3Ba2Cu3Ox (NEG) films leads to a substantial increase in the critical current density in superconducting YBa2Cu3Ox (YBCO) films deposited by pulsed laser deposition on such NEG layers. The enhancement is observed over a wide range of fields and temperatures. Transmission electron microscopy shows that such YBCO films possess a high density of localized areas, typically 20 x 20 nm2 in size, where distortion of atomic planes give rotational (2 to 5 degrees) moire patterns. Their distribution is random and uniform, and expected to be the origin of the enhanced flux pinning. Magneto-optical imaging shows that these films have excellent macroscopic magnetic uniformity.Comment: 4 pages, 4 figure

    Magneto-optical investigations of Ag-sheathed Bi-2223 tapes with ferromagnetic shielding

    Full text link
    An increase in the critical current and suppression of AC losses in superconducting wires and tapes with soft magnetic sheath have been predicted theoretically and confirmed experimentally. In this work we present the results of magneto-optical investigations on a series of Ag-sheathed Bi-2223 tapes with Ni coating. We visualize distributions of magnetic field at increasing external field and different temperatures, demonstrating a difference between the flux propagation in the superconductor with Ni rims and a reference sample without Ni coating.Comment: 2 page

    Macroturbulent Instability of the Flux Line Lattice in Anisotropic Superconductors

    Full text link
    A theory of the macroturbulent instability in the system containing vortices of opposite directions (vortices and antivortices) in hard superconductors is proposed. The origin of the instability is connected with the anisotropy of the current capability in the sample plane. The anisotropy results in the appearance of tangential discontinuity of the hydrodynamic velocity of vortex and antivortex motion near the front of magnetization reversal. As is known from the classical hydrodynamics of viscous fluids, this leads to the turbulization of flow. The examination is performed on the basis of the anisotropic power-law current-voltage characteristics. The dispersion equation for the dependence of the instability increment on the wave number of perturbation is obtained, solved, and analyzed analytically and numerically. It is shown that the instability can be observed even at relatively weak anisotropy.Comment: 10 pages, 5 figures, submitted to Physical Review
    corecore