1,564 research outputs found

    Analysis of a VTOL hover task with predictor displays using an optimal control model of the human operator

    Get PDF
    The influence of different types of predictor displays in a longitudinal VTOL hover task is analyzed in a theoretical study. It was assumed that pitch angle and position are presented to the pilot in separate displays namely the artificial horizon and position display. The predictive information is calculated by means of a Taylor series. From earlier experimental studies it is well known that predictor displays improve human and system performance and result in reducing human workload. In this study, an optimal control model is used to prove this effect theoretically. Several cases with differing amounts of predictive and rate information are compared

    The Right Mutation Strength for Multi-Valued Decision Variables

    Full text link
    The most common representation in evolutionary computation are bit strings. This is ideal to model binary decision variables, but less useful for variables taking more values. With very little theoretical work existing on how to use evolutionary algorithms for such optimization problems, we study the run time of simple evolutionary algorithms on some OneMax-like functions defined over Ω={0,1,,r1}n\Omega = \{0, 1, \dots, r-1\}^n. More precisely, we regard a variety of problem classes requesting the component-wise minimization of the distance to an unknown target vector zΩz \in \Omega. For such problems we see a crucial difference in how we extend the standard-bit mutation operator to these multi-valued domains. While it is natural to select each position of the solution vector to be changed independently with probability 1/n1/n, there are various ways to then change such a position. If we change each selected position to a random value different from the original one, we obtain an expected run time of Θ(nrlogn)\Theta(nr \log n). If we change each selected position by either +1+1 or 1-1 (random choice), the optimization time reduces to Θ(nr+nlogn)\Theta(nr + n\log n). If we use a random mutation strength i{0,1,,r1}ni \in \{0,1,\ldots,r-1\}^n with probability inversely proportional to ii and change the selected position by either +i+i or i-i (random choice), then the optimization time becomes Θ(nlog(r)(log(n)+log(r)))\Theta(n \log(r)(\log(n)+\log(r))), bringing down the dependence on rr from linear to polylogarithmic. One of our results depends on a new variant of the lower bounding multiplicative drift theorem.Comment: an extended abstract of this work is to appear at GECCO 201

    Magnetoelastic Coupling in the Spin-Dimer System TlCuCl3_3

    Full text link
    We present high-resolution measurements of the thermal expansion and the magnetostriction of TlCuCl3_{3} which shows field-induced antiferromagnetic order. We find pronounced anomalies in the field and temperature dependence of different directions of the lattice signaling a large magnetoelastic coupling. The phase boundary is extremely sensitive to pressure, e.g. the transition field would change by about +/- 185$%/GPa under uniaxial pressure applied along certain directions. This drastic effect can unambiguously be traced back to changes of the intradimer coupling under uniaxial pressure. The interdimer couplings remain essentially unchanged under pressure, but strongly change when Tl is replaced by K.Comment: 4 pages with 4 figures include

    Uniaxial pressure dependencies of the phase boundary of TlCuCl_3

    Full text link
    We present a thermal expansion and magnetostriction study of TlCuCl_3, which shows a magnetic-field induced transition from a spin gap phase to a Neel ordered phase. Using Ehrenfest relations we derive huge and strongly anisotropic uniaxial pressure dependencies of the respective phase boundary, e.g. the transition field changes by about ±185\pm 185 GPa depending on the direction of uniaxial pressure.Comment: 2 pages, e figures; presented at SCES200

    Constraints on the Size of Extra Dimensions from the Orbital Evolution of the Black-Hole X-Ray Binary XTE J1118+480

    Full text link
    In a universe of the Randall-Sundrum type, black holes are unstable and emit gravitational modes in the extra dimension. This leads to dramatically shortened lifetimes of astrophysical black holes and to an observable change of the orbital period of black-hole binaries. I obtain an upper limit on the rate of change of the orbital period of the binary XTE J1118+480 and constrain the asymptotic curvature radius of the extra dimension to a value that is of the same order as the constraints from other astrophysical sources. A unique property of XTE J1118+480 is that the expected rate of change of the orbital period due to magnetic braking alone is so large that only one additional measurement of the orbital period would lead to the first detection of orbital evolution of a black-hole binary and impose the tightest constraint to date on the size of one extra dimension of the order of 35 microns.Comment: accepted for publication in A&

    Mapping land cover from satellite images: A basic, low cost approach

    Get PDF
    Simple, inexpensive methodologies developed for mapping general land cover and land use categories from LANDSAT images are reported. One methodology, a stepwise, interpretive, direct tracing technique was developed through working with university students from different disciplines with no previous experience in satellite image interpretation. The technique results in maps that are very accurate in relation to actual land cover and relative to the small investment in skill, time, and money needed to produce the products

    Non-Linear Effects in Non-Kerr spacetimes

    Full text link
    There is a chance that the spacetime around massive compact objects which are expected to be black holes is not described by the Kerr metric, but by a metric which can be considered as a perturbation of the Kerr metric. These non-Kerr spacetimes are also known as bumpy black hole spacetimes. We expect that, if some kind of a bumpy black hole exists, the spacetime around it should possess some features which will make the divergence from a Kerr spacetime detectable. One of the differences is that these non-Kerr spacetimes do not posses all the symmetries needed to make them integrable. We discuss how we can take advantage of this fact by examining EMRIs into the Manko-Novikov spacetime.Comment: 8 pages, 3 Figures; to appear in the proceedings of the conference "Relativity and Gravitation: 100 Years after Einstein in Prague" (2012
    corecore