298 research outputs found

    Modulated Rashba interaction in a quantum wire: Spin and charge dynamics

    Full text link
    It was recently shown that a spatially modulated Rashba spin-orbit coupling in a quantum wire drives a transition from a metallic to an insulating state when the wave number of the modulation becomes commensurate with the Fermi wave length of the electrons in the wire. It was suggested that the effect may be put to practical use in a future spin transistor design. In the present article we revisit the problem and present a detailed analysis of the underlying physics. First, we explore how the build-up of charge density wave correlations in the quantum wire due to the periodic gate configuration that produces the Rashba modulation influences the transition to the insulating state. The interplay between the modulations of the charge density and that of the spin-orbit coupling turns out to be quite subtle: Depending on the relative phase between the two modulations, the joint action of the Rashba interaction and charge density wave correlations may either enhance or reduce the Rashba current blockade effect. Secondly, we inquire about the role of the Dresselhaus spin-orbit coupling that is generically present in a quantum wire embedded in semiconductor heterostructure. While the Dresselhaus coupling is found to work against the current blockade of the insulating state, the effect is small in most materials. Using an effective field theory approach, we also carry out an analysis of effects from electron- electron interactions, and show how the single-particle gap in the insulating state can be extracted from the more easily accessible collective charge and spin excitation thresholds. The smallness of the single-particle gap together with the anti-phase relation between the Rashba and chemical potential modulations pose serious difficulties for realizing a Rashba-controlled current switch in an InAs-based device. Some alternative designs are discussed.Comment: 20 pages, 6 figure

    Measuring Luttinger Liquid Correlations from Charge Fluctuations in a Nanoscale Structure

    Full text link
    We suggest an experiment to study Luttinger liquid behavior in a one-dimensional nanostructure, avoiding the usual complications associated with transport measurements. The proposed setup consists of a quantum box, biased by a gate voltage, and side-coupled to a quantum wire by a point contact. Close to the degeneracy points of the Coulomb blockaded box, and in the presence of a magnetic field sufficiently strong to spin polarize the electrons, the setup can be described as a Luttinger liquid interacting with an effective Kondo impurity. Using exact nonperturbative techniques we predict that the differential capacitance of the box will exhibit distinctive Luttinger liquid scaling with temperature and gate voltage.Comment: REVTeX, 4 pages, 1 figure included. Final version, two references adde

    Metal-insulator transition in a quantum wire driven by a modulated Rashba spin-orbit coupling

    Full text link
    We study the ground-state properties of electrons confined to a quantum wire and subject to a smoothly modulated Rashba spin-orbit coupling. When the period of the modulation becomes commensurate with the band filling, the Rashba coupling drives a quantum phase transition to a nonmagnetic insulating state. Using bosonization and a perturbative renormalization group approach, we find that this state is robust against electron-electron interactions. The gaps to charge- and spin excitations scale with the amplitude of the Rashba modulation with a common interaction-dependent exponent. An estimate of the expected size of the charge gap, using data for a gated InAs heterostructure, suggests that the effect can be put to practical use in a future spin transistor design.Comment: 4 pages; published version (added references, typos corrected

    Fermi-LAT Observations of High- and Intermediate-Velocity Clouds: Tracing Cosmic Rays in the Halo of the Milky Way

    Full text link
    It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding halo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of gamma-ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locations throughout the Galactic plane. In this article we use 73 months of data from the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for gamma-ray emission produced by CR interactions in several high- and intermediate-velocity clouds located at up to ~ 7 kpc above the Galactic plane. We achieve the first detection of intermediate-velocity clouds in gamma rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. We find that the gamma-ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. We compare our results to predictions of CR propagation models.Comment: Accepted for publication in the Astrophysical Journa

    Transporting ideas between marine and social sciences: experiences from interdisciplinary research programs.

    Get PDF
    The oceans comprise 70% of the surface area of our planet, contain some of the world’s richest natural resources and are one of the most significant drivers of global climate patterns. As the marine environment continues to increase in importance as both an essential resource reservoir and facilitator of global change, it is apparent that to find long-term sustainable solutions for our use of the sea and its resources and thus to engage in a sustainable blue economy, an integrated interdisciplinary approach is needed. As a result, interdisciplinary working is proliferating. We report here our experiences of forming interdisciplinary teams (marine ecologists, ecophysiologists, social scientists, environmental economists and environmental law specialists) to answer questions pertaining to the effects of anthropogenic-driven global change on the sustainability of resource use from the marine environment, and thus to transport ideas outwards from disciplinary confines. We use a framework derived from the literature on interdisciplinarity to enable us to explore processes of knowledge integration in two ongoing research projects, based on analyses of the purpose, form and degree of knowledge integration within each project. These teams were initially focused around a graduate program, explicitly designed for interdisciplinary training across the natural and social sciences, at the Gothenburg Centre for Marine Research at the University of Gothenburg, thus allowing us to reflect on our own experiences within the context of other multi-national, interdisciplinary graduate training and associated research programs

    Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm/Casher Effects

    Full text link
    We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a side-branch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.Comment: Replaced with published version; 5 page

    Pairing and Density Correlations of Stripe Electrons in a Two-Dimensional Antiferromagnet

    Full text link
    We study a one-dimensional electron liquid embedded in a 2D antiferromagnetic insulator, and coupled to it via a weak antiferromagnetic spin exchange interaction. We argue that this model may qualitatively capture the physics of a single charge stripe in the cuprates on length- and time scales shorter than those set by its fluctuation dynamics. Using a local mean-field approach we identify the low-energy effective theory that describes the electronic spin sector of the stripe as that of a sine-Gordon model. We determine its phases via a perturbative renormalization group analysis. For realistic values of the model parameters we obtain a phase characterized by enhanced spin density and composite charge density wave correlations, coexisting with subleading triplet and composite singlet pairing correlations. This result is shown to be independent of the spatial orientation of the stripe on the square lattice. Slow transverse fluctuations of the stripes tend to suppress the density correlations, thus promoting the pairing instabilities. The largest amplitudes for the composite instabilities appear when the stripe forms an antiphase domain wall in the antiferromagnet. For twisted spin alignments the amplitudes decrease and leave room for a new type of composite pairing correlation, breaking parity but preserving time reversal symmetry.Comment: Revtex, 28 pages incl. 5 figure

    Multiwavelength Evidence for Quasi-periodic Modulation in the Gamma-ray Blazar PG 1553+113

    Get PDF
    We report for the first time a gamma-ray and multi-wavelength nearly-periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope (LAT) we have discovered an apparent quasi-periodicity in the gamma-ray flux (E >100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 +/-0.08 year-period gamma-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the OVRO, Tuorla, KAIT, and CSS monitoring programs and Swift UVOT. The optical cycle appearing in ~10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multi-wavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.Comment: 8 pages, 5 figures. Accepted to The Astrophysical Journal Letters. Corresponding authors: S. Ciprini (ASDC/INFN), S. Cutini (ASDC/INFN), S. Larsson (Stockholm Univ/KTH), A. Stamerra (INAF/SNS), D. J. Thompson (NASA GSFC

    Gamma-ray flares from the Crab Nebula

    Full text link
    A young and energetic pulsar powers the well-known Crab Nebula. Here we describe two separate gamma-ray (photon energy >100 MeV) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from PeV (10^15 eV) electrons in a region smaller than 1.4 10^-2 pc. These are the highest energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.Comment: Contact authors: Rolf Buehler,[email protected]; Stefan Funk,[email protected]; Roger Blandford,rdb3@stanford ; 16 pages,2 figure
    • …
    corecore