1,291 research outputs found

    PAR13: HYPOTHETICAL VERSUS REAL WILLINGNESS TO PAY IN THE HEALTH CARE SECTOR: RESULTS FROM A FIELD EXPERIMENT

    Get PDF
    How does the brain carry out working memory storage, categorization, and voluntary performance of event sequences? The LIST PARSE neural model proposes an answer to this question that unifies the explanation of cognitive, neurophysiological, and anatomical data from humans and monkeys. It quantitatively simulates human cognitive data about immediate serial recall and free recall, and monkey neurophysiological data from the prefrontal cortex obtained during sequential sensory-motor imitation and planned performance. The model clarifies why both spatial and non-spatial working memories share the same type of circuit design. It proposes how the laminar circuits of lateral prefrontal cortex carry out working memory storage of event sequences within layers 6 and 4, how these event sequences are unitized through learning into list chunks within layer 2/3, and how these stored sequences can be recalled at variable rates that are under volitional control by the basal ganglia. These laminar prefrontal circuits are variations of laminar circuits in the visual cortex that have been used to explain data about how the brain sees. These examples from visual and prefrontal cortex illustrate how laminar neocortex can represent both spatial and temporal information, and open the way towards understanding how other behaviors may be represented and controlled by variations on a shared laminar neocortical design.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624, N00014-95-1-0409

    Enhanced Two-Channel Kondo Physics in a Quantum Box Device

    Full text link
    We propose a design for a one-dimensional quantum box device where the charge fluctuations are described by an anisotropic two-channel Kondo model. The device consists of a quantum box in the Coulomb blockade regime, weakly coupled to a quantum wire by a single-mode point contact. The electron correlations in the wire produce strong back scattering at the contact, significantly increasing the Kondo temperature as compared to the case of non-interacting electrons. By employing boundary conformal field theory techniques we show that the differential capacitance of the box exhibits manifest two-channel Kondo scaling with temperature and gate voltage, uncontaminated by the one-dimensional electron correlations. We discuss the prospect to experimentally access the Kondo regime with this type of device.Comment: EPL style, 5 pages, 1 figure, final published versio

    PAR14: ASSESSMENT OF THE RELATIONSHIP BETWEEN DISEASE SEVERITY, QUALITY OF LIFE AND WILLINGNESS TO PAY IN ASTHMA

    Get PDF

    The effect of multiple paternity on genetic diversity during and after colonisation

    Get PDF
    In metapopulations, genetic variation of local populations is influenced by the genetic content of the founders, and of migrants following establishment. We analyse the effect of multiple paternity on genetic diversity using a model in which the highly promiscuous marine snail Littorina saxatilis expands from a mainland to colonise initially empty islands of an archipelago. Migrant females carry a large number of eggs fertilised by 1 - 10 mates. We quantify the genetic diversity of the population in terms of its heterozygosity: initially during the transient colonisation process, and at long times when the population has reached an equilibrium state with migration. During colonisation, multiple paternity increases the heterozygosity by 10 - 300 % in comparison with the case of single paternity. The equilibrium state, by contrast, is less strongly affected: multiple paternity gives rise to 10 - 50 % higher heterozygosity compared with single paternity. Further we find that far from the mainland, new mutations spreading from the mainland cause bursts of high genetic diversity separated by long periods of low diversity. This effect is boosted by multiple paternity. We conclude that multiple paternity facilitates colonisation and maintenance of small populations, whether or not this is the main cause for the evolution of extreme promiscuity in Littorina saxatilis.Comment: 7 pages, 5 figures, electronic supplementary materia

    High arsenic (As) concentrations in the shallow groundwaters of southern Louisiana: Evidence of microbial controls on As mobilization from sediments

    Get PDF
    Citation: Yang, N., Shen, Z., Datta, S., & Johannesson, K. H. (2016). High arsenic (As) concentrations in the shallow groundwaters of southern Louisiana: Evidence of microbial controls on As mobilization from sediments. Journal of Hydrology: Regional Studies, 5, 100-113. doi:10.1016/j.ejrh.2015.11.023Study region: The Mississippi Delta in southern Louisiana, United States. Study focus: The probable role that microbial respiration plays in As release from the shallow aquifer sediments. New hydrological insights for the region: Shallow groundwaters in southern Louisiana have been reported to contain elevated As concentrations, whereas mechanisms responsible for As release from sediments have rarely been studied in this region. Microbial respiration is generally considered the main mechanism controlling As release in reducing anoxic aquifers such as the shallow aquifers in southern Louisiana and those of the Bengal basin. This study investigates the role microbial respiration plays in As release from shallow aquifer sediments in southern Louisiana through sediment incubation experiments and porewater analysis. Arsenic concentrations were the lowest in the sterilized control experiments, slightly higher in the un-amended experiments, and the highest in the experiments amended with acetate, and especially those amended with both acetate and AQDS (9,10-anthraquinone-2,6-disulfonic acid). Although Fe and Mn generally decreased at the beginning of all the experiments, they did follow a similar trend to As after the decrease. Porewater analysis showed that As and Fe concentrations were generally positively correlated and were higher in the coarse-grained sediments than in the fine-grained sediments. Results of the investigation are consistent with microbial respiration playing a key role in As release from the shallow aquifers sediments in southern Louisiana. © 2015 The Authors

    A universal mechanism generating clusters of differentiated loci during divergence-with-migration

    Get PDF
    Genome-wide patterns of genetic divergence reveal mechanisms of adaptation under gene flow. Empirical data show that divergence is mostly concentrated in narrow genomic regions. This pattern may arise because differentiated loci protect nearby mutations from gene flow, but recent theory suggests this mechanism is insufficient to explain the emergence of concentrated differentiation during biologically realistic timescales. Critically, earlier theory neglects an inevitable consequence of genetic drift: stochastic loss of local genomic divergence. Here we demonstrate that the rate of stochastic loss of weak local differentiation increases with recombination distance to a strongly diverged locus and, above a critical recombination distance, local loss is faster than local 'gain' of new differentiation. Under high migration and weak selection this critical recombination distance is much smaller than the total recombination distance of the genomic region under selection. Consequently, divergence between populations increases by net gain of new differentiation within the critical recombination distance, resulting in tightly-linked clusters of divergence. The mechanism responsible is the balance between stochastic loss and gain of weak local differentiation, a mechanism acting universally throughout the genome. Our results will help to explain empirical observations and lead to novel predictions regarding changes in genomic architectures during adaptive divergence. This article is protected by copyright. All rights reserved

    Measuring Luttinger Liquid Correlations from Charge Fluctuations in a Nanoscale Structure

    Full text link
    We suggest an experiment to study Luttinger liquid behavior in a one-dimensional nanostructure, avoiding the usual complications associated with transport measurements. The proposed setup consists of a quantum box, biased by a gate voltage, and side-coupled to a quantum wire by a point contact. Close to the degeneracy points of the Coulomb blockaded box, and in the presence of a magnetic field sufficiently strong to spin polarize the electrons, the setup can be described as a Luttinger liquid interacting with an effective Kondo impurity. Using exact nonperturbative techniques we predict that the differential capacitance of the box will exhibit distinctive Luttinger liquid scaling with temperature and gate voltage.Comment: REVTeX, 4 pages, 1 figure included. Final version, two references adde

    Is embryo abortion a post‐zygotic barrier to gene flow between Littorina ecotypes?

    Get PDF
    Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis, divergent selection forms strong barriers to gene flow, while the role of post‐zygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Post‐zygotic barriers might include genetic incompatibilities (e.g. Dobzhansky–Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1,011 embryos (mean 130 ± 123), and abortion rates varied between 0% and 100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterized female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index, and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant post‐zygotic barriers contributing to ecotype divergence, and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females

    Using replicate hybrid zones to understand the genomic basis of adaptive divergence

    Get PDF
    Combining hybrid zone analysis with genomic data is a promising approach to understanding the genomic basis of adaptive divergence. It allows for the identification of genomic regions underlying barriers to gene flow. It also provides insights into spatial patterns of allele frequency change, informing about the interplay between environmental factors, dispersal and selection. However, when only a single hybrid zone is analysed, it is difficult to separate patterns generated by selection from those resulting from chance. Therefore, it is beneficial to look for repeatable patterns across replicate hybrid zones in the same system. We applied this approach to the marine snail Littorina saxatilis, which contains two ecotypes, adapted to wave-exposed rocks vs. high-predation boulder fields. The existence of numerous hybrid zones between ecotypes offered the opportunity to test for the repeatability of genomic architectures and spatial patterns of divergence. We sampled and phenotyped snails from seven replicate hybrid zones on the Swedish west coast and genotyped them for thousands of single nucleotide polymorphisms. Shell shape and size showed parallel clines across all zones. Many genomic regions showing steep clines and/or high differentiation were shared among hybrid zones, consistent with a common evolutionary history and extensive gene flow between zones, and supporting the importance of these regions for divergence. In particular, we found that several large putative inversions contribute to divergence in all locations. Additionally, we found evidence for consistent displacement of clines from the boulder–rock transition. Our results demonstrate patterns of spatial variation that would not be accessible without continuous spatial sampling, a large genomic data set and replicate hybrid zones.publishedVersio

    PMD25 ELICITING WILLINGNESS TO PAY WITHIN THE HEALTH SECTOR WITHOUT BIAS

    Get PDF
    corecore